Supporting Information for

A simple, scalable protocol for the synthesis of ricinoleic acid-functionalised, size- and shape-tunable, hydrophobic and hydrophilic superparamagnetic nanoparticles

Sohel Reja*

Department of Inorganic and Physical Chemistry,

Indian Institute of Science, Bangalore-560012, India

*Corresponding Author: sohelreja@iisc.ac.in

Table of contents:

- 1. Fig. S1: Structures of oleic acid and ricinoleic acid.
- 2. Fig. S2: TGA of iron ricinolates complex and RA@SPIONs.
- 3. Fig. S3: indexed SAED of RA@SPIONs.
- 4. Fig. S4: M-H plot of RA-coated ultrasmall SPIONs and manganese ferrite nanoparticles.
- 5. Fig. S5: PXRD of ultrasmall, cubic SPIONs, MnFe₂O₄ and CoMnFe₂O₄ nanoparticles.
- 6. Fig. S6: indexed HRTEM and FFT of MnFe₂O₄ and CoMnFe₂O₄ nanoparticles.
- 7. Fig. S7: high-resolution XPS spectra of CoMnFe₂O₄ nanoparticles.
- 8. Fig. S8: EDS mapping of MnFe₂O₄ nanoparticles.
- 9. Fig. S9: DLS study of the NTA@SPIONs and OH@SPIONs
- 10. Table S1: XPS binding energies of Mn 2p, Fe 2p and Co 2p of CoMnFe₂O₄.

Fig. S1 Structures of oleic acid and ricinoleic acid.

Fig. S2 TGA plot of (a) precursor iron ricinolate and (b) RA@SPIONs.

Fig. S3 indexed SAED of the RA@SPIONs.

Fig. S4 The isothermal (300K) magnetization (M) as a function of the applied magnetic field (H) for the ricinoleic acid-coated ultrasmall iron oxide (USPIONs) and manganese ferrite nanoparticles (MnFe₂O₄ nanospheres) shown in black solid line. Red triangles represent modified Langevin fit.

Fig. S5 PXRD pattern of the ultrasmall and cubic iron oxide nanoparticles, $MnFe_2O_4$ and $CoMnFe_2O_4$ nanospheres and cubes.

Fig. S6 Indexed HRTEM and corresponding FFT of the $MnFe_2O_4$ (a) nanosphere, (b) nanocube and $CoMnFe_2O_4$ (c) nanosphere and (d) nanocube.

Fig. S7 High-resolution XPS spectra of (a) Fe 2p, (b) Co 2p and (c) Mn 2p of CoMnFe₂O₄.

Species	Binding energy (eV)	Assignment
	640.1	Mn 2p _{3/2}
Mn 2p	652.9	Mn 2p _{1/2}
	710.7	Fe 2p _{3/2}
Fe 2p	724.6	Fe $2p_{1/2}$
	718.2, 733.9	Satellite
Co 2p	780.5	Co 2p _{3/2}
	795.3	Co 2p _{1/2}
	786.5, 802.3	Satellite

Table S1 XPS binding energies of (a) Mn 2p, (b) Fe 2p and (c) Co 2p of CoMnFe₂O₄.

Fig. S8 EDS color mapping of the $MnFe_2O_4$ nanoparticles. (a) HAADF, (b) overlapped, (c) O, (d) Fe, and (e) Mn.

Fig. S9 Hydrodynamic diameter of the NTA@SPIONs and OH@SPIONs.