Composite Aerogel Membranes with Well Dispersed Nano M-TiO2@GO

for Efficient Photocatalysis

Xiaozhe Zhang ^{a, †}, Siqi Zhang ^{a, †}, Xiaohui Mao ^a, Yifan Liu ^a, Yaru Li ^a, Weilong Meng

^a, Liping Zhu ^{a, *}, Meifang Zhu ^a

^a State Key Laboratory of Advanced Fiber Materials, College of Materials Science and

Engineering, Donghua University, Shanghai 201620, China

[†] These authors contribute equally to this work.

* Correspondence to: L. Zhu (zhulp@dhu.edu.cn)

Fig. S1. The SEM image of Ti₃AlC₂.

Fig. S2. FTIR spectrum of oxidized MXene powders.

Fig. S3. High resolution XPS spectra of O 1s region of MXene before and after oxidation

Fig. S4. Characterization of morphology and element distribution of $C_{15}M_{15}G_5$. (a) The SEM image, the EDS distribution maps of (b) C, (c) O, and (d) Ti elements

Fig. S5. Adsorption curves of M-TiO_2@GO/CHs composite aerogel membrane for different dyes.

(a) Rhodamine B, (b) Acid Blue 1.

Fig. S6. UV-vis absorption spectra of degradation of different dyes by C₁₅M₁₅G₅

(a) Rhodamine B, (b) Acid Blue 1.