CuNi-PTC Metal-Organic Framework: Unveiling Pseudocapacitive Energy Storage and Water Splitting Capabilities

Samika Anand, Kalathiparambil Rajendra Pai Sunajadevi*

Department of Chemistry, Christ University, Bengaluru-560029, Karnataka, India.

*Email address: sunajadevi.kr@christuniversity.in https://orcid.org/0000-0001-7826-1620

Supporting Information

Figure S1. EDS spectrum of CuNi-PTC

Figure S2. BJH pore size distribution of CuNi-PTC

Figure S3. CV curves of (a) CuNi-PTC with scan rates varying from 10 mV s⁻¹ to 1 mV s⁻¹ (b) CuNi-PTC and bare Ni foam at 10 mV s⁻¹.

Figure S5. Stability test of CuNi-PTC.

Sl.	MOF	Specific	Capacitance	Reference
No		capacitance	retention	
1.	Fe/Ni-BDC	1190.88 F/g	93.7 % after 5000	1
		@1 mV/s	cycles	
2.	Co/Ni-MOF-2:1	610 F/g @0.5	95.5 % after 5000	2
		A/g	cycles	
3.	Zn-doped Ni-MOF	1620 F/g	91 % after 3000 cycles	3
		@0.25 A/g		
4.	CoNi-ZIF@N-CNT-2	1118 F/g @1	72.5 % after 10000	4
		A/g	cycles	
5.	Mn/Ni-	793.6 F/g @1	78.3 % after 2000	5
	MOF@MWCNTs	A/g	cycles	
6.	Co/Ni-MOF	2608 F/g @1	88 % after 5000 cycles	6
		A/g		
7.	Zn-Ni MOF	466.5 F/g	44 % after 2500 cycles	7
		@0.5 A/g		
8.	CuNi-PTC	1066.24 F/g	94 % after 5000	This work
		@1 A/g	cycles	

 Table S1. Summary of literature reports based on Ni-based bimetallic MOFs for

 supercapacitors

Figure S6. FESEM images of CuNi-PTC after 5000 charge-discharge cycles.

Figure S7. (a) LSV curve for overall water splitting (b) Non faradic cyclic voltammograms with scan rates varying from 100 mV s⁻¹ to 50 mV s⁻¹.

Figure S8. FESEM images of CuNi-PTC after Bulk electrolysis for 2 h.

References

- R. Nivetha, J. Jana, S. Ravichandran, H. N. Diem, T. Van Phuc, J. S. Chung, S. G. Kang, W. M. Choi and S. H. Hur, Two-dimensional bimetallic Fe/M- (Ni, Zn, Co and Cu) metal organic framework as efficient and stable electrodes for overall water splitting and supercapacitor applications, *J. Energy Storage*, 2023, 61, 106702.
- 2 X. Hang, J. Zhao, Y. Xue, R. Yang and H. Pang, Synergistic effect of Co/Ni bimetallic metal–organic nanostructures for enhanced electrochemical energy storage, *J. Colloid Interface Sci.*, 2022, **628**, 389–396.
- J. Yang, C. Zheng, P. Xiong, Y. Li and M. Wei, Zn-doped Ni-MOF material with a high supercapacitive performance, *J. Mater. Chem. A*, 2014, **2**, 19005–19010.
- 4 A. Zhang, H. Zhang, B. Hu, M. Wang, S. Zhang, Q. Jia, L. He and Z. Zhang, The

intergrated nanostructure of bimetallic CoNi-based zeolitic imidazolate framework and carbon nanotubes as high-performance electrochemical supercapacitors, *J. Colloid Interface Sci.*, 2022, **608**, 1257–1267.

- 5 Y. Han, J. Zhou, L. Wang, L. Xing, Z. Xue, Y. Jiao and Y. Pang, Redox-active nanostructure electrode of Mn/Ni bimetal organic frameworks anchoring on multiwalled carbon nanotubes for advanced supercapacitor, *J. Electroanal. Chem.*, 2021, 882, 114993.
- 6 H. Chen, Y. Huo, K. Cai and Y. Teng, Controllable preparation and capacitance performance of bimetal Co/Ni-MOF, *Synth. Met.*, 2021, **276**, 116761.
- Y. Zhu, Z. Tao, C. Cai, Y. Tan, A. Wang and Y. Yang, Facile synthesis Zn-Ni bimetallic MOF with enhanced crystallinity for high power density supercapacitor applications, *Inorg. Chem. Commun.*, 2022, **139**, 109391.