Supplementary Information

Designed formation of Cu₂S hierarchical nanostructures as self-supported photoelectrodes for photo-supercapacitors

Ruitong Xu, at Muhammad Arif, at Guopeng Pan, a Lin Xu ab* and Ting Zhu ab*

^a School of Physics and Electronic Information, Yunnan Normal University, 768 Juxian Street, Kunming 650500, Yunnan, China.

^b Yunnan Key Laboratory of Optoelectronic Information Technology, School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China.

^{*}Email: Xulin13888488199@163.com (L. Xu); zhut0002@ynnu.edu.cn (T. Zhu)

[†]These authors contributed equally.

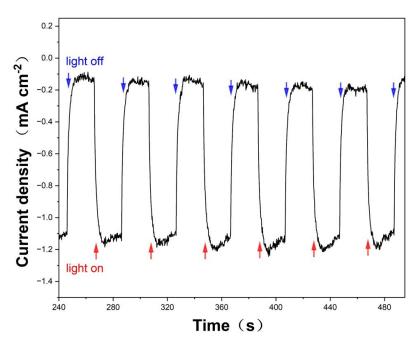
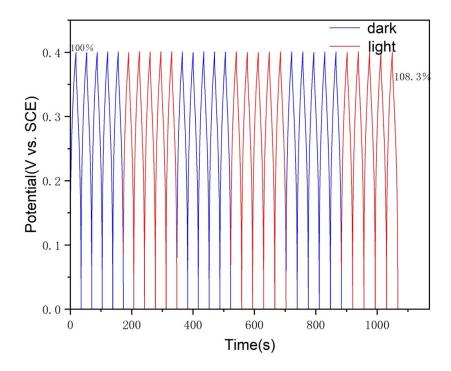



Fig. S1. The photocurrent response of the CF@Cu $_2$ S-100 sample was obtained with a time interval of 20 s.

Fig. S2. The GCD curves were obtained at 20 mA cm $^{-2}$ under a switched light on/off mode for the CF@Cu₂S-100 sample.

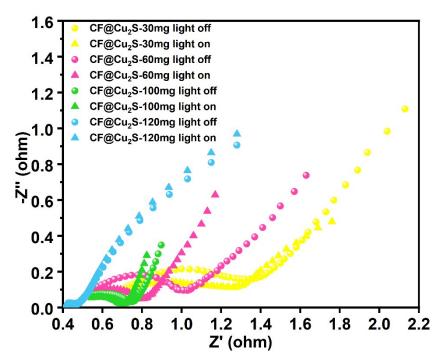
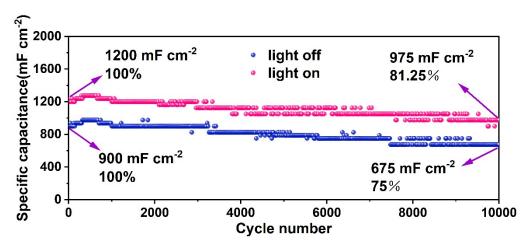
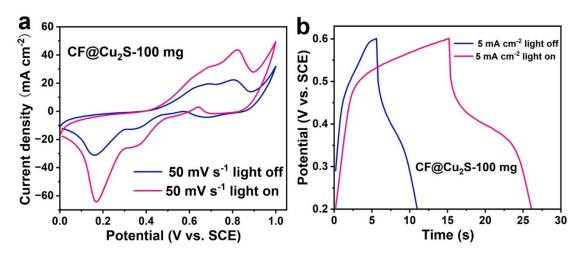




Fig. S3. EIS plots of CF@Cu₂S electrodes.

Fig. S4. Cycling performances under light off and on conditions of the CF@Cu₂S-100 sample at a current density of 30 mA cm⁻² using a light source with a single wavelength of 365 nm.

Fig. S5. (a) CV and (b) GCCD curves obtained under light on and off conditions, respectively, of the CF@Cu₂S-100 sample.

Table S1. A comparison of the electrochemical performance of CF@Cu₂S-100 with various PSC composites has been previously reported.

PSC devices	Capacitance	Capacitance	Deferences
rsc devices	(dark)	(Light)	References
CL@SnS/NF	15.7 mF cm ⁻²	21.0 mF cm ⁻²	[1]
CoCN-0.55	943.8 mF cm ⁻²	1088.0 mF cm ⁻²	[2]
Cu ₂ O/Fe ₂ O ₃	507 F g ⁻¹	595 F g ⁻¹	[3]
BVO-V ₂ O ₅ @TiNT	100 mF cm ⁻²	288 mF cm ⁻²	[4]
NiCo ₂ S ₄ @Cu ₂ O@CF	733.3 mF cm ⁻²	1156.7 mF cm ⁻²	[5]
CF@Cu ₂ S-100	918 mF cm ⁻²	1458 mF cm ⁻²	This work

References:

- 1. Li, T., et al., Flake-like SnS anchored on the carbon layer for supercapacitor electrode with photo-responsive capacitance enhancement. Journal of Alloys and Compounds, 2024. **976**: p. 173377.
- 2. Bai, L., et al., Photocatalysis-assisted Co_3O_4/g - C_3N_4p -n junction all-solid-state supercapacitors: a bridge between energy storage and photocatalysis. Advanced science, 2020. 7(22): p. 2001939.
- 3. Lv, X., et al., Construction of light-sensitive Cu_2O/Fe_2O_3 heterostructures to

- promote photocatalytic CO_2 reduction and photo-assisted charge storage. Sustainable Energy & Fuels, 2024. **8**(21): p. 4992-5000.
- 4. Renani, A.S., et al., New photoelectrodes based on bismuth vanadate-V₂O₅@ TiNT for photo-rechargeable supercapacitors. Journal of Energy Storage, 2023. **62**: p. 106866.
- 5. Arif, M., et al., Construction of three-dimensional NiCo₂S₄@Cu₂O nanowires with a high surface photovoltage to promote the energy efficiency of photoassisted supercapacitors. Journal of Colloid and Interface Science, 2025: p. 138067.