Improving Oral Bioavailability of Acalabrutinib using Polymer Lipid Hybrid Nanoparticles: Design, Optimization, and in vivo Pharmacokinetic Evaluation.

Swagata Sinha^a, Punna Rao Ravi*^a, Sahadevan Rajesh Rashmi^a, Lakshmi Koumudi Devaraju^a

^aDepartment of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, INDIA 500078.

Supplementary Data

Implementation of design

The critical factors – polymer to lipid ratio (A); concentration of surfactant (B); speed of homogenization (C); and duration of homogenization (D) affecting the CQAs – PS (Y_1) ; PDI (Y_2) ; and %LE (Y_3) were taken up for a circumscribed central composite design (cCCD). The levels of the factors can be described as given in Table S1.

Table S1: Critical factors, levels, and quality attributes used in the cCCD to optimize preparation of ACP-PLHNs.

Factor Code	Factors & units	High Level (+1)	Low Level (-1)	Alpha high (+α)	Alpha low (-α)	Center point level	
А	Polymer to lipid ratio	2.5	1	3.25	0.25	1.75	
В	Concentration of T80 (% w/v)	2.0	0.7	2.65	0.05	1.35	
С	Speed of Homogenization (rpm)	15000	7500	18800	3800	11300	
D	Duration of Homogenization (min)	20	10	25	5	15	
The CQAs of ACP-PLHNs							
Y ₁	PS (nm) < 250 nm is desirable			able			
Y ₂	PDI		< 0.6 is desirable				
Y ₃	%LE	> 20% is desirable					

Table S2 : Solubility of ACP in aqueous solutions of different surfactants.

Surfactant	Concentration (% w/v)	ACP solubility (μg/mL)	
Poloxamer 188	2	0.0202	
POIOXAMET 188	0.15	0.0075	
Delevered 407	2	1.7391	
Poloxamer 407	0.15	0.2095	

T 00	2	0.1941	
Tween 80	0.15	0.0523	
Dahadasal alaskal	2	0.1087	
Polyvinyl alcohol	0.15	0.0137	
Delining purrelidan	2	2.2728	
Polyvinyl pyrrolidone	0.15	0.7479	

• Determination of CQAs and critical factors

A number of preliminary trials (Table S3) were conducted to determine the critical factors and their levels affecting the CQAs of ACP-PLHNs.

Table S3: Preliminary trials to determine the critical factors, their levels affecting the CQAs.

Batch No.	Method attributes			CQAs			
	Polymer to lipid ratio	Concentration of T80 (% w/v)	High shear homogenizer parameters	PS (nm)	PDI	%LE	
01-PB	1:1	1	Speed = 10000 rpm Time = 20 min	182.5	0.35	8.68	
02-PB	2:1			208.1	0.41	10.42	
03-PB	3:2			238.2	0.36	9.68	
04-PB	2:1	0.5	Speed = 10000 rpm Time = 20 min	189.1	0.37	10.26	
05-PB		0.75		194.7	0.39	10.47	
06-PB		1.5		247.1	0.48	9.37	
07-PB		2		287.1	0.61	8.20	
08-PB	2:1	1	Speed = 7500 rpm Time = 20 min	198.2	0.50	9.91	
09-PB			Speed = 12000 rpm Time = 20 min	219.4	0.42	10.77	
10-PB			Speed = 15000 rpm Time = 20 min	179.4	0.41	8.93	
11-PB	2:1	2:1 1	Speed = 10000 rpm Time = 10 min	149.9	0.38	7.02	
12-PB			Speed = 10000 rpm Time = 15 min	130.9	0.35	8.23	
13-PB			Speed = 10000 rpm Time = 20 min	180.7	0.45	8.94	

Note: CQAs = critical quality attributes; PS = particle size; PDI = polydispersity index; %LE = loading efficiency. Polymer = Polycaprolactone; Lipid = DPPC and lecithin. Temperature of AP was maintained at 55 °C and the rate of addition of OP to AP was maintained at 0.5 mL/min.

• Experimental design using DoE

The accuracy of transformation of PS (Y_1) ; PDI (Y_2) ; and %LE (Y_3) could be depicted by their respective Box-Cox power transformation plots (Fig. S1a, S1b, and S1c, respectively).

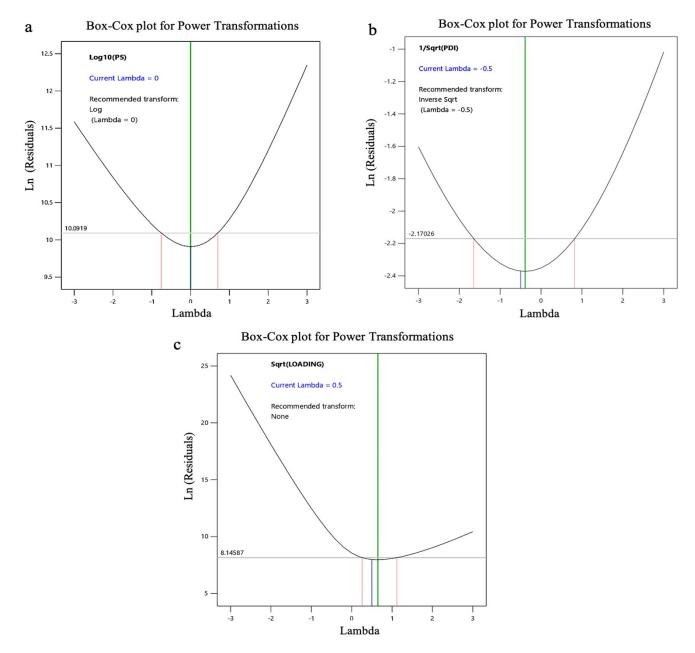


Fig. S1: The Box-Cox power transformation plots depicting the goodness-of-fit of the selected model for the CRVs – PS (a); PDI (b); and %LE (c).

• Pharmacokinetic profiles of the intravenous ACP solution and conventional ACP suspension (1)

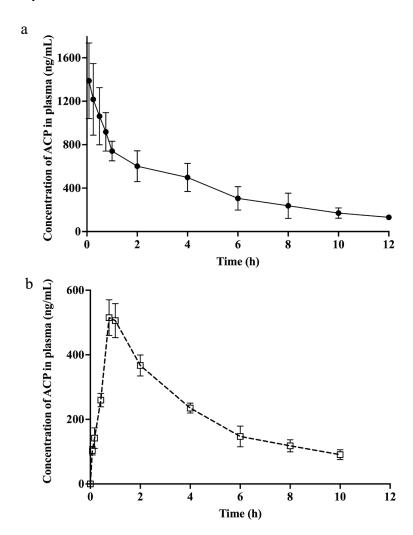


Fig. S2 : $In\ vivo\ PK$ profile obtained from intravenous administration of ACP solution at the dose of 12 mg/Kg (a) and oral administration of conventional ACP suspension and ACP-PLHNs nanosuspension at the dose of 30 mg/Kg (b) to male wistar rats (n = 3).

Reference:

1. Sinha S, Ravi PR, Somvanshi M, SR R. Development and validation of a simple HPLC-UV-based bioanalytical method for estimation of acalabrutinib in rat plasma and its application in evaluation of drug loaded nanocrystal formulation. Sep Sci Plus. 2024;