
Figure S1. Illustration of data indexing adjustment during preprocessing. 

The AFTDS data was recorded as a series of spectra spanning 280–360 nm after sequential laser 
exposure over 2-3 minutes with 0.5 seconds as the exposure time. Each fluorescence time series 
originally contained 240–360 spectra (collected at 0.5 s intervals over 2–3 minutes). When saving 
autofluorescence data, the spectrometer software starts numbering each spectra from t0 when 
shutter opens. However, collection of actual spectra data might start at a later time with higher t 
number (e.g., t17) since adjustment of sample position might be necessary to find one spot with 
high fluorescence signal. The figure above illustrates this for clarification.

Before the data can be utilized effectively for machine learning models, it must first undergo 
curation to ensure it is appropriately structured. The goal of the task is to predict the molecule type 
based on the time series data of fluorescent intensities. Therefore, the dataset needs to be reshaped, 
where the time intervals are reflected in separate columns, representing the intensity values 
captured at different time points. Each row should correspond to the time dependent fluorescent 
intensity at a particular wavelength, with its name and spot number (Seg) serving as the label. This 
reshaped data structure is illustrated in Table S1.

Table S1.  The dataset with time series values across different spots and molecules.
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As depicted in Table S1, it can be observed that some rows do not begin at time zero. This results 
in missing values (Nan) at the start of certain rows. To address this issue, each row needs to be 
shifted left to eliminate the leading Nan values, effectively aligning all rows to start at the same 
initial time point. The corrected data are displayed in Table S2.

Table S2.  The reshaped dataset with time series values across different spots and molecules.

Once the rows are adjusted to start from time zero, the next step is to compute the minimum and 
maximum lengths of the non-Nan values in each row. This is essential for understanding the 
variation in the recorded intensity values across time and ensuring consistency in data processing. 
It is assumed that the intensity values are dependent on each other through time, making the time 
series aspect crucial for accurate prediction of the molecule type. By aligning and trimming the 
time series data appropriately, the machine learning model will be better equipped to capture the 
underlying patterns in fluorescent intensity across different molecules.

To address the varying lengths of the time series data, it is necessary to feed fixed-length vectors 
into the LSTM model. Based on the minimum length of the time series, which is 17 (data from t0 
to t16), any time series longer than this length will be sliced into smaller segments, each of length 
17. This technique, referred to as slicing time series, augments the dataset by creating multiple 
fixed-length inputs from longer sequences. By ensuring that each segment conforms to the fixed 
input size (17), the model can better generalize and handle varying input lengths during training.



Figure S2. A) SEM image of the coffee ring pattern formed by the molecular solution, B) 
Borderline of the coffee ring pattern, and C) STEM image of an individual AlCNC particle.

 



  



Figure S3. Fluorescence spectra of DA, DOPAC, and NE in five different concentrations in DI water.



Figure S4. Absorption spectra of DA, DOPAC, and NE in five different concentrations in DI water.



Figure S5. AFTDS spectra of DA, DOPAC, and NE on ALCNC in three different concentrations.





Figure S6. Confusion matrices and Table showing both percentage and sample count per classification 
outcome.



Table S3. Classification Models Performance Metrics Across Classes (DA, DOPAC, NE)

Model Class DA NE DOPAC Weighted Avg Macro 
Avg Accuracy

Precision 0.90 0.88 0.89 0.89 0.89 -
Recall 0.88 0.89 0.90 0.89 0.89 -

LSTM
using 

AFTDS of 
MANTs on 

AlCNC

F1 Score
Support

0.89
54784

0.88
39936

0.90
51712

0.89
146432

0.89
146432

0.89

Precision 0.83 0.88 0.89 0.87 0.87 -
Recall 0.89 0.83 0.86 0.87 0.86 -

KNN
using 

AFTDS of 
MANTs on 

AlCNC

F1 Score
Support

0.86
54784

0.86
39936

0.87
51712

0.87
146432

0.87
146432

0.86

Precision 0.81 0.89 0.84 0.84 0.85 -
Recall 0.87 0.77 0.86 0.84 0.83 -

RF
using 

AFTDS of 
MANTs on 

AlCNC

F1 Score
Support

0.84
54784

0.82
39936

0.85
51712

0.84
146432

0.84
146432

0.84

Precision 0.70 0.63 0.71 0.68 0.68 -
Recall 0.45 0.67 0.89 0.67 0.68 -KNN

using AF of 
MANTs in 
the solution

F1 Score
Support

0.55
1105

0.65
1326

0.79
1326

0.66
3757

0.67
3757

0.68

Precision 0.67 0.67 0.78 0.71 0.71 -
Recall 0.61 0.69 0.82 0.71 0.71 -

RF
using AF of 
MANTs in 
the solution F1 Score

Support
0.55
1105

0.65
1326

0.79
1326

0.66
3757

0.67
3757

0.71



Figure S7. Bar charts of Precision, Recall and F1 Score for DA, NE, DOPAC, Weighted Average and 
Macro Average.





Supplementary Methods for Machine Learning Classification 

Data Preprocessing

Two independent datasets were utilized in this study: (i) AFTDS data obtained from MANTs on 
an AlCNC substrate, and (ii) static AF spectra recorded in solution. For the AFTDS dataset, 
temporal autofluorescence signals corresponding to DA, DOPAC, and NE were acquired under 
continuous illumination. These signals were arranged into a matrix with each row representing a 
single time-dependent trace. Missing values were handled by shifting NaNs to the right, and 
shorter sequences were padded to match the length of the longest trace; additionally, traces with 
mixed labels were discarded and the remaining tags were standardized to “DA”, “DOPAC” or 
“NE”. Conversely, in the AF-in-solution dataset, each sample consisted of a static 
autofluorescence intensity recorded at specific wavelengths. The values were restructured into 
[wavelength, intensity] pairs for each neurotransmitter, thereby forming a feature matrix amenable 
to conventional machine learning approaches. In both cases, feature values were normalized to the 
range [0, 1] using MinMax scaling. Class labels were converted using LabelEncoder for traditional 
classifiers and one-hot encoding for neural network models.

Model Design and Training

AF-in-Solution Models (KNN and RF): 

The AF-in-solution dataset was analyzed using classical classifiers:

 KNN: Following an extensive grid search, a value of k=11 was selected to optimize cross-
validation performance using a 4-fold scheme.

 RF: A forest comprising 150 decision trees (n_estimators=150) was used, and model 
hyperparameters were tuned through grid search in a 4-fold cross-validation framework. 
Final performance was assessed on an independent 25% hold-out test set. Model 
performance was quantified using per-class precision, recall, F1-score, overall accuracy, 
and both macro and weighted averages.

Models on AFTDS (AlCNC Substrate):

The AFTDS dataset was modeled using deep learning as well as classical approaches:

 LSTM Network: The proposed LSTM architecture was implemented in Keras and 
comprised:

o An input layer accommodating the time-series shape.
o Three sequential LSTM layers with 200, 150, and 100 units, respectively, each 

followed by batch normalization to stabilize learning.
o A fully connected (dense) layer with 50 neurons, followed by batch normalization.
o A final SoftMax output layer for classification into the three neurotransmitter 

classes.



The model was trained for 50 epochs using a batch size of 64, with a 75/25 training-validation 
split. A learning rate scheduler was applied to reduce the learning rate upon plateauing of the 
validation loss.

 KNN and RF: In addition to the LSTM model, both KNN and RF classifiers were also 
applied to the AFTDS dataset. The same preprocessing pipeline was used for feature 
extraction, with models evaluated through 4-fold cross-validation and subsequently on a 
stratified 25% hold-out test set. Performance metrics, including class-wise F1-scores and 
confusion matrices, were reported.

Data Transformation for Time-Series Modeling

For sequence-based modeling, the AFTDS data were further preprocessed by right-aligning the 
time traces through shifting valid entries to the left and padding shorter sequences. Only traces 
exhibiting sufficient length and unambiguous class labels were retained to ensure that the dynamic 
spectral evolution was accurately captured by the LSTM network.

Performance Evaluation

Model performance was assessed using standard metrics: overall accuracy, per-class precision, 
recall, and F1-score, as well as macro and weighted averages. Confusion matrices displaying both 
raw counts and row-wise percentages were used to visualize classification performance and to 
elucidate error patterns, particularly highlighting class boundary confusion.


