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Figure S1. Illustration of data indexing adjustment during preprocessing.
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The AFTDS data was recorded as a series of spectra spanning 280—-360 nm after sequential laser
exposure over 2-3 minutes with 0.5 seconds as the exposure time. Each fluorescence time series
originally contained 240-360 spectra (collected at 0.5 s intervals over 2-3 minutes). When saving
autofluorescence data, the spectrometer software starts numbering each spectra from t0 when
shutter opens. However, collection of actual spectra data might start at a later time with higher t
number (e.g., t17) since adjustment of sample position might be necessary to find one spot with
high fluorescence signal. The figure above illustrates this for clarification.

Before the data can be utilized effectively for machine learning models, it must first undergo
curation to ensure it is appropriately structured. The goal of the task is to predict the molecule type
based on the time series data of fluorescent intensities. Therefore, the dataset needs to be reshaped,
where the time intervals are reflected in separate columns, representing the intensity values
captured at different time points. Each row should correspond to the time dependent fluorescent
intensity at a particular wavelength, with its name and spot number (Seg) serving as the label. This
reshaped data structure is illustrated in Table S1.

Table S1. The dataset with time series values across different spots and molecules.

Time

wavelength Tag Seg te t1 t2 3 ta ts t6 ... t352 353 t354 t355 356 t357 t358 359 t360 t361
280.30017 DA100uM S1 MaN MaN NaM MNaN MaN MaM NaM ... NaN NaN NaN MNaN NaN NaN NaN MNaN NaN NaN
28030017 DA100uM 52 10260 10420 10430 10490 1039.0 1046.0 1046.0 .. NaW NaN MNaM MNaN MNaN NaW NaN NaMN  NaN  MNaN
= 28030017 DA100uM S3 10420 1036.0 1043.0 10430 1039.0 1038.0 10400 .. NaN MaN MaM MNaN MNaN NaW MNaN HNaM NaWN MNaN
Eu 280.30017 DA1000uUM S1 10300 1046.0 10400 1046.0 1044.0 1046.0 1046.0 .. NaN MNaN NaM MNaN MNaN NaN MNaN MNaM  NaN  NaN
% 280.30017 DA1000uM S2 10440 1048.0 10430 10450 1043.0 1048.0 1046.0 .. NaN NaN NaM NaN MaN NaN MNaN HNaN NaN NaN

g : ;
359.41248 ME1000uM  S2 10300 10440 1047.0 10410 10420 10500 10480 .. NaM MaN NaN MNaN MNaN NaN NaM NaN NaM NaN
359.41248 NE1000uM S3 MaN MNah NaM MaN MaN MaN NaM ... NaN NaN NaN NaN NaN NaN NaN MNaN NaN NaN
35941248 NESOOuUM 351 MaM 1033.0 1027.0 1027.0 1031.0 1028.0 1029.0 .. NaW NaN MNaM NaN MNaN NaM NaN NaMN  NaN  NaN
35941248 MNES0OuM S2 MNaM NaM NaN NaN MNaN MNaM MNaM .. NaN MNaN MaM MNaN MNaN NaW MNaM HNaM NaWN MNaN
359.41248 NESOOuUM S3 MaM NaN 10680 1073.0 1069.0 1074.0 1067.0 « NaN NMaN MaM MNaN MNaN NaN NaN NaN  NaN  MNaN




As depicted in Table S1, it can be observed that some rows do not begin at time zero. This results
in missing values (Nan) at the start of certain rows. To address this issue, each row needs to be
shifted left to eliminate the leading Nan values, effectively aligning all rows to start at the same
initial time point. The corrected data are displayed in Table S2.

Table S2. The reshaped dataset with time series values across different spots and molecules.

Time
wavelength Seg Tag e t1 t2 t3 ta 15 t6 ... t8 t9 tle til1 tiz2 t13 t1a 115 tl6
28030017 S1 DA 10440 1037.0 10410 1047.0 10480 10400 10420 .- 10430 10390 1041.0 10420 10470 10520 10420 1048.0 10470
28030017 S1 DA 1048.0 1049.0 1043.0 1043.0 10400 10410 10490 .. 10410 1040.0 1041.0 1039.0 10420 1047.0 10430 1046.0 1043.0
28030017 S1 DA 10400 10460 1040.0 10420 10380 1039.0 10450 .. 1043.0 1048.0 10450 1041.0 10460 10460 10460 1045.0 1041.0
gﬂ- 280.30017 51 DA 1046.0 1041.0 1044.0 10440 10480 10470 10460 ... 1050.0 1048.0 1043.0 10400 1048.0 10390 10440 10420 1048.0
5 280.30017 S1 DA 1046.0 10500 1044.0 10450 10430 10450 10430 .. 10420 1044.0 1047.0 10470 10480 10450 10460 1053.0 1043.0
= 35941248 S3 NE 1028.0 1028.0 10320 10330 10300 10320 10310 .. 10320 1028.0 1026.0 10350 10280 10360 1034.0 1030.0 1026.0
35941248 S3 NE 1034.0 1031.0 1029.0 1029.0 10250 10250 1031.0 .. 10310 1031.0 1026.0 10300 1026.0 10320 1027.0 1027.0 1027.0
35941248 S3 NE 1025.0 1024.0 1023.0 1021.0 10240 1023.0 1024.0 .. 1025.0 1021.0 1026.0 10250 1027.0 10200 1031.0 1021.0 1025.0
35941248 S3 NE 10250 1026.0 10250 10220 10210 10240 10260 .. 10260 1027.0 1021.0 10230 10250 10220 10260 1024.0 1024.0
35941248 S3 NE 1029.0 1027.0 10260 1027.0 1027.0 1027.0 1027.0 .. 1027.0 1027.0 1027.0 1027.0 1027.0 1027.0 1027.0 1027.0 1027.0

Once the rows are adjusted to start from time zero, the next step is to compute the minimum and
maximum lengths of the non-Nan values in each row. This is essential for understanding the
variation in the recorded intensity values across time and ensuring consistency in data processing.
It is assumed that the intensity values are dependent on each other through time, making the time
series aspect crucial for accurate prediction of the molecule type. By aligning and trimming the
time series data appropriately, the machine learning model will be better equipped to capture the
underlying patterns in fluorescent intensity across different molecules.

To address the varying lengths of the time series data, it is necessary to feed fixed-length vectors
into the LSTM model. Based on the minimum length of the time series, which is 17 (data from t0
to t16), any time series longer than this length will be sliced into smaller segments, each of length
17. This technique, referred to as slicing time series, augments the dataset by creating multiple
fixed-length inputs from longer sequences. By ensuring that each segment conforms to the fixed
input size (17), the model can better generalize and handle varying input lengths during training.



Figure S2. A) SEM image of the coffee ring pattern formed by the molecular solution, B)
Borderline of the coffee ring pattern, and C) STEM image of an individual AICNC particle.







Figure S3. Fluorescence spectra of DA, DOPAC, and NE in five different concentrations in DI water.

g
w”

N

Fluorescence Intensity
-
- wn

e
w”

x10* DA

S0uM

300 320 340
Wavelength (nm)

0.8

0.6

04

0.2

x10*
1 -

DOPAC

30 uM
25um

20um

10uM

300

320 340
Wavelength (nm)

360

25

1.5

0.5

x10* NE

50 uM

SN
40

30 uM\

=325 uM
’I’OTM\
10uM
300 320 340

Wavelength (nm)

360



Absorption

Figure S4. Absorption spectra of DA, DOPAC, and NE in five different concentrations in DI water.
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Figure S5. AFTDS spectra of DA, DOPAC, and NE on ALCNC in three different concentrations.
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True Label

Figure S6. Confusion matrices and Table showing both percentage and sample count per classification

outcome.
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Table S3. Classification Models Performance Metrics Across Classes (DA, DOPAC, NE)

Model | Class DA NE DOPAC | Weighted Avg Ni‘zo Accuracy
LSTM Precision 0.90 0.88 0.89 0.89 0.89 -
g | Recall 0.88  0.89 0.90 0.89 0.89 ;
AFSO | BlScore | 0.89 088 0.90 0.89 0.89 0.89
AICNC Support 54784 39936 51712 146432 146432
KNN Precision 0.83 0.88 0.89 0.87 0.87 -
using Recall 0.89 0.83 0.86 0.87 0.86 -
AVDSO | Bl Score | 0.8 0.86  0.87 0.87 0.87 0.86
AICNC Support 54784 39936 51712 146432 146432
RF Precision 0.81 0.89 0.84 0.84 0.85 -
wme | Recall 087  0.77 0.86 0.84 0.83 ;
AFDSO | ElScore | 0.84  0.82 085 0.84 0.84 0.84
AICNC Support 54784 39936 51712 146432 146432
Precision 0.70 0.63 0.71 0.68 0.68 -
Ki‘fjf Recall 045  0.67 0.89 0.67 0.68 -
MANTS in F1 Score 0.55 0.65 0.79 0.66 0.67 0.68
el Support | 1105 1326 1326 3757 3757
RF Precision 0.67 0.67 0.78 0.71 0.71 -
wing AVl | Recall 061 069 082 0.71 0.71 .
the solution | F'] Score 0.55 0.65 0.79 0.66 0.67 0.71
Support 1105 1326 1326 3757 3757




Figure S7. Bar charts of Precision, Recall and F1 Score for DA, NE, DOPAC, Weighted Average and
Macro Average.
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Supplementary Methods for Machine Learning Classification
Data Preprocessing

Two independent datasets were utilized in this study: (i) AFTDS data obtained from MANTSs on
an AICNC substrate, and (ii) static AF spectra recorded in solution. For the AFTDS dataset,
temporal autofluorescence signals corresponding to DA, DOPAC, and NE were acquired under
continuous illumination. These signals were arranged into a matrix with each row representing a
single time-dependent trace. Missing values were handled by shifting NaNs to the right, and
shorter sequences were padded to match the length of the longest trace; additionally, traces with
mixed labels were discarded and the remaining tags were standardized to “DA”, “DOPAC” or
“NE”. Conversely, in the AF-in-solution dataset, each sample consisted of a static
autofluorescence intensity recorded at specific wavelengths. The values were restructured into
[wavelength, intensity] pairs for each neurotransmitter, thereby forming a feature matrix amenable
to conventional machine learning approaches. In both cases, feature values were normalized to the
range [0, 1] using MinMax scaling. Class labels were converted using LabelEncoder for traditional
classifiers and one-hot encoding for neural network models.

Model Design and Training
AF-in-Solution Models (KNN and RF):
The AF-in-solution dataset was analyzed using classical classifiers:

o KNN: Following an extensive grid search, a value of k=11 was selected to optimize cross-
validation performance using a 4-fold scheme.

e RF: A forest comprising 150 decision trees (n_estimators=150) was used, and model
hyperparameters were tuned through grid search in a 4-fold cross-validation framework.
Final performance was assessed on an independent 25% hold-out test set. Model
performance was quantified using per-class precision, recall, F1-score, overall accuracy,
and both macro and weighted averages.

Models on AFTDS (AICNC Substrate):
The AFTDS dataset was modeled using deep learning as well as classical approaches:

e LSTM Network: The proposed LSTM architecture was implemented in Keras and
comprised:

o An input layer accommodating the time-series shape.

o Three sequential LSTM layers with 200, 150, and 100 units, respectively, each
followed by batch normalization to stabilize learning.
A fully connected (dense) layer with 50 neurons, followed by batch normalization.

o A final SoftMax output layer for classification into the three neurotransmitter
classes.



The model was trained for 50 epochs using a batch size of 64, with a 75/25 training-validation
split. A learning rate scheduler was applied to reduce the learning rate upon plateauing of the
validation loss.

e KNN and RF: In addition to the LSTM model, both KNN and RF classifiers were also
applied to the AFTDS dataset. The same preprocessing pipeline was used for feature
extraction, with models evaluated through 4-fold cross-validation and subsequently on a
stratified 25% hold-out test set. Performance metrics, including class-wise F1-scores and
confusion matrices, were reported.

Data Transformation for Time-Series Modeling

For sequence-based modeling, the AFTDS data were further preprocessed by right-aligning the
time traces through shifting valid entries to the left and padding shorter sequences. Only traces
exhibiting sufficient length and unambiguous class labels were retained to ensure that the dynamic
spectral evolution was accurately captured by the LSTM network.

Performance Evaluation

Model performance was assessed using standard metrics: overall accuracy, per-class precision,
recall, and F1-score, as well as macro and weighted averages. Confusion matrices displaying both
raw counts and row-wise percentages were used to visualize classification performance and to
elucidate error patterns, particularly highlighting class boundary confusion.



