Supplementary Information (SI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2025

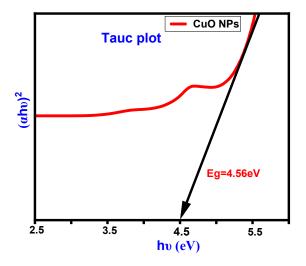
Exploring a GE/Nafion/Co-MOF nanosheets/CuO NPs/GOx powered electrochemical biosensor for ultrasensitive detection of Rebaudioside A

Manju Manuel^a, Suvardhan Kanchi^{a*}, Venkataramana Losetty^b

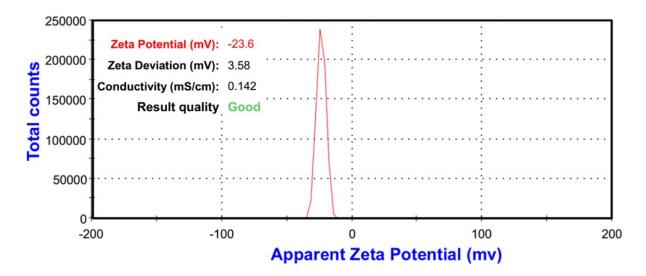
^aDepartment of Chemistry, CHRIST University, Bengaluru,560 029, India

^bDepartment of Chemistry, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, 600 062, India

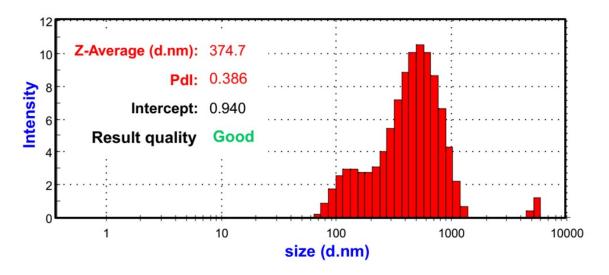
1. Extraction of Graphite Rod from the Discharged Batteries



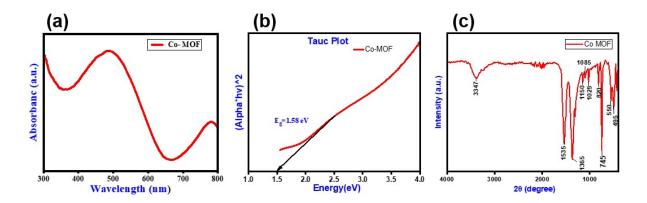
S.1 . Illustration of the safe dismantling of a graphite rod from batteries.


S.2 Schematic representation of the cleaning process of the recovered graphite rod

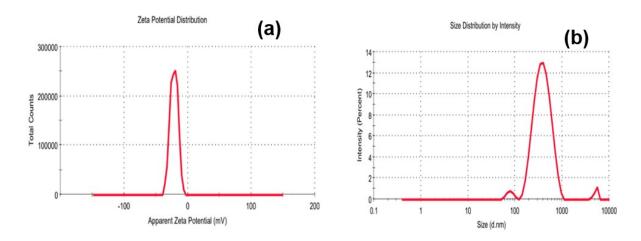
2. UV -Visible spectroscopy


S.3. Tauc plot of the biosynthesized CuO NPs

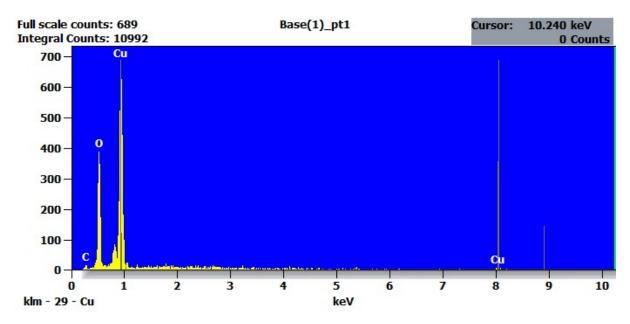
2. Zeta potential analysis of CuO NPs


S.4. Zeta potential analysis of biosynthesised CuO NPs

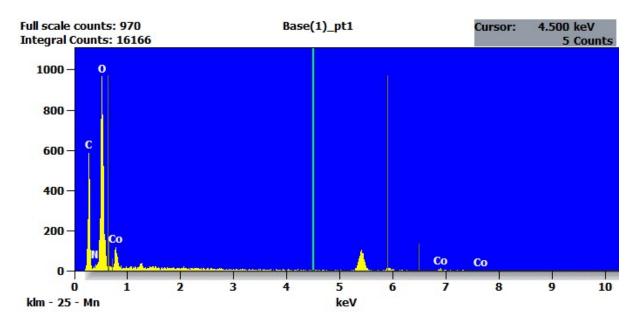
3. DLS Particle Size Analysis


S.5. Particle Size analysis of biosynthesized CuO NPs

4. Spectroscopic Analysis of Co-MOF

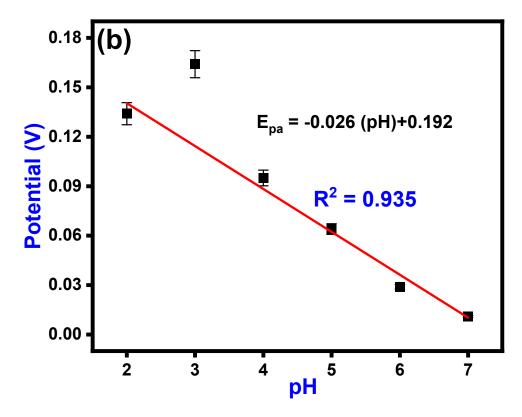

S.6. (a) UV-Vis analysis of Co-MOF;(b) Tauc plot of Co-MOF; (c) FTIR spectroscopy of Co-

MOF.



S.7. (a) Zeta Potential of Co-MOF; (b) DLS analysis of Co-MOF

5. Energy-Dispersive X-ray Spectroscopy



S.6 EDS Analysis of CuO NPs

S.7 EDS Analysis of Co-MOF

6. Method Optimization

S.8 pH Vs. potential

Supplementary Table 1: Comparison of the present electrochemical biosensor with reported sensors from the literature.

Glycoside	Method	Stability/ Precision	Linear Range	LOD	Ref.
Rebaudioside A	Electrochemical Biosensor (GCE)	Good (stable signal)	0.001–0.05 mM & 0.075–1.25 mM	0.264 μΜ	[1]
Steviol Glycosides	Electrochemical Immunisensor (GCE)	Stable signal	0.1996 mg/L to 1.5748 mg/L	0.6346 mg/L.	[2]
Rebaudioside A	HPLC-UV (RP-HPLC)	RSD <2%	0.0005–1.5 mg/mL	0.01 mg/mL	[3]
Stevioside	UHPLC-ESI-MS/MS	RSD 1.1–9.3%	0.2-1.0 mg/L	0.003-0.078 μg/g	[4]
Rebaudioside D	UHPLC-ESI-MS/MS	RSD 1.1–9.3%	0.2-1.0 mg/L	0.003-0.078 μg/g	[5]
Rebaudioside M	UHPLC-ESI-MS/MS	RSD 1.1–9.3%	0.2-1.0 mg/L	0.003-0.078 μg/g	[4]
Glucose	Electrochemical sensor (GCE)	Stable signal	0.05–9.5 mM	1.4 μΜ	[6]
Sucrose	Electrochemical sensor (SPE)	RSD<2%	0.5 - 4.5 mM	0.02 mM	[7]
Caffeine	Electrochemical sensor (GCE)	4.5%	1–30 μΜ	20μΜ	[8]
Fructose	Electrochemical Sensor(GCE)	Stable signal	0.3 - 1.5 M	0.008 mM	[9]
Rebaudioside A	Electrochemical Biosensor (Graphite)	3.9%	2-14 μΜ	0.23μΜ	Present work

References:

- [1] A. Bathinapatla, S. Kanchi, P. Singh, M. I. Sabela, and K. Bisetty, "An ultrasensitive performance enhanced novel cytochrome c biosensor for the detection of rebaudioside A," *Biosens. Bioelectron.*, vol. 77, pp. 116–123, 2016, doi: https://doi.org/10.1016/j.bios.2015.09.004.
- [2] P. Hloma, "DEVELOPMENT OF AN ELECTROCHEMICAL IMMUNOSENSOR FOR THE DETECTION OF STEVIOL GLYCOSIDES BY EXPERIMENTAL AND COMPUTATIONAL METHODS By: Submitted in fulfilment of the requirements of the degree of Master of Applied Science in Chemistry in the Faculty of App," no. April, 2020.
- [3] N. S. Kolate, H. Mishra, S. G. Kini, G. Raghavan, and T. B. Vyas, "A Validated RP-HPLC Method for Quantification of Steviol Glycoside: Rebaudioside A in Extracts of Stevia Rebaudiana Leaf," *Chromatographia*, vol. 84, no. 1, pp. 21–26, 2021, doi: 10.1007/s10337-020-03980-2.
- [4] Y. Phungsiangdee, P. Chaothong, W. Karnpanit, and P. Tanaviyutpakdee, "Validation of UHPLC-ESI-MS/MS Method for Determining Steviol Glycoside and Its

- Derivatives in Foods and Beverages," *Foods*, vol. 12, no. 21. 2023. doi: 10.3390/foods12213941.
- [5] I. Aranda-González, Y. Moguel-Ordoñez, and D. Betancur-Ancona, "Determination of rebaudioside A and Stevioside in leaves of S. rebaudiana Bertoni grown in México by a validated HPLC method," *Am. J. Anal. Chem.*, vol. 6, no. 11, p. 878, 2015.
- [6] R. Ahmad *et al.*, "Nano-donuts shaped nickel oxide nanostructures for sensitive non-enzymatic electrochemical detection of glucose," *Microsyst. Technol.*, vol. 28, no. 1, pp. 313–318, 2022, doi: 10.1007/s00542-020-04754-4.
- [7] N. Zhuang *et al.*, "Rapid determination of sucrose and glucose in microbial fermentation and fruit juice samples using engineered multi-enzyme biosensing microchip," *Microchem. J.*, vol. 164, p. 106075, 2021, doi: https://doi.org/10.1016/j.microc.2021.106075.
- [8] L. Redivo, M. Stredanský, E. De Angelis, L. Navarini, M. Resmini, and Ĺ. Švorc, "Bare carbon electrodes as simple and efficient sensors for the quantification of caffeine in commercial beverages," *R. Soc. open Sci.*, vol. 5, no. 5, p. 172146, 2018.
- [9] M. S. Sha *et al.*, "Evaluating fructose content in poultry feed: electrochemical insights," *J. Appl. Electrochem.*, vol. 55, no. 4, pp. 1089–1097, 2025, doi: 10.1007/s10800-024-02212-x.