Supplementary Information (SI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2025

Electronic Supplementary Information (ESI*)

Resource-efficient Pre-Treatment with Partial Desalination Approach Using Graphene-MXene Coated Cellulose Filters for Desalination Plants

Madhusudhana M. Devadiga^a, Anushree S. Bhat^a, Subham Sarangi^a, Anil Kumar H.S^b, Nannan Wang^c, Santosh K. Tiwari^a*

Correspondence to

Prof. Santosh K. Tiwari,

Email: <u>ismgraphene@gmail.com</u> / <u>santosh.tiwari@nitte.edu.in</u>

Sl. No	Method used	Principle	Advantages	Disadvantages	Ref.
1	Coagulation & Flocculation	Addition of chemicals (e.g., FeCl ₃ , Al ₂ (SO ₄) ₃) to destabilize particles and form flocs	Removes suspended solids, Cost-effective, Improves downstream filtration	Produces sludge, requires precise chemical dosing	[1]
2	Cartridge Filtration	Depth filtration using porous cartridges (typically 5 μm)	Compact, Easy replacement, protects RO membranes	Requires frequent replacement, Limited capacity for large volumes	[2]
3	Ultrafiltration (UF)	Membrane filtration that removes particles, colloids, and bacteria (pore size ~0.01 µm)	High efficiency, removes viruses, Stable feed for RO	High initial cost, Membrane fouling, needs cleaning	[3]
4	Microfiltration (MF)	Membranes with larger pore size (~0.1 μm) for particle and microorganism removal	Reduces biofouling, Low- pressure operation	Cannot remove dissolved salts or organics, Fouling risk	[4]
5	Dissolved Air Flotation (DAF)	Air bubbles attach to suspended particles, which float and are skimmed	Effective for algae and oil, Less sludge than coagulation	Requires a large area, not efficient for very small particles	[5]
6	Chlorination/Dichlorination	Chlorine is added to kill microorganisms; sodium bisulfite is used before RO to neutralise chlorine	Controls biofouling, Cost- effective	Chlorine damages RO membranes, generates harmful by-products	[6]
7	Acid Addition (pH Adjustment)	Acid (e.g., H ₂ SO ₄) lowers pH to reduce scale formation	Prevents scaling (especially CaCO ₃), Enhances antiscalant performance	Corrosive, pH must be carefully controlled	[7]
8	Antiscalant Dosing	Polyphosphates or polymers inhibit the crystal formation of scale-forming salts	Minimises scaling, Enhances RO recovery	Potential biofouling must be dosed precisely	[8]
9	Our method	Gravity-driven filtration, modified adsorbates with a hybrid sandwich-like arrangement.	Zero energy requirement, no hazardous chemicals, eco- friendly, dual purpose and cost- effective.	Relatively low water flux, need for replacement of the materials.	

Table S1. Commercially available pretreatment methods and their working principle, along with pros and cons.

Pretreatment method	Parameters studied	Results	Advantages	Limitations	Ref.
Ultrafiltration (UF)	SDI, turbidity, particle removal, biofouling	- SDI <3 - Effective particle/microbe removal - Stable flux	- High particle/microbe removal - Improved RO feed quality	- Membrane fouling over long-term - Chemical cleaning needed	[9]
Pilot-scale dual- media filtration	SDI, MFI, RO performance, fouling	- SDI <3 - Satisfied pilot-scale performance	- Proven pilot-scale - Low fouling risk	- Site-specific - Chemical addition may be needed	[10]
Dual media rapid filtration	Fouling fractionation, turbidity	->80% particulate fouling removed	- Simple - Proven technique	- Limited organic removal - Fouling can occur	[11]
Ceramic UF	SDI, DOC, particle removal	- Robust removal of particulates - SDI < 3	- High chemical/thermal stability - Long life	- High initial cost - Energy demand	[12]
Gravity-driven membrane (GDM) filtration	Permeate flux, AOC removal, biofilm	- Flux ~9.1 L/m²h - AOC removal ~50–55%	- Low energy - Biofilm enhances organics removal	- Lab-scale only - Low flux - Long-term biofilm control	[13]
Pre-chlorination + GDM	Flux, fouling, microbial removal	- Flux increased 15–68% - Reduced EPS	- Enhanced flux - Microbial safety	- Long-term stability issues - Chemical addition	[14]
Softening + Ballasted Flocculation (SBF)	Ca ²⁺ /Mg ²⁺ removal, SDI, settling velocity	- Settling velocity ~3.5 cm/s - SDI <3 - Sludge reduced 76.5%	- Rapid removal of Ca ²⁺ /Mg ²⁺ - Reduced RO fouling	- Chemical addition - Sludge handling required - Other foulants not fully removed	[15]
Fibre media filtration	SDI, MFI, turbidity, organics	- SDI ~2.6 - MFI ~1.4 s/L ² - Turbidity <0.35 NTU	- High velocity - Compact footprint - Organic/particle removal	- Maintenance and chemical dosing required	[16]
Graphene oxide (GO/rGO) membrane-based filtration	Ca ²⁺ /Mg ²⁺ rejection, flux, TBT	- TBT increased to 166 °C - Improved divalent rejection	- Reduced scaling - Improved thermal efficiency	- Limited to lab-scale - Cost - Other fouling not addressed	[17]
Flat sheet PVDF GDM	Flux, biofilm properties, DOC	- Flux ~7.3–8.4 L/m².h - Biofilm porosity correlates with flux	- Low-energy - Biofilm can enhance flux stability	- Modest flux - Limited DOC removal - Pilot scale	[18]
Fibre filter + Dual media	SDI, MFI, DOC, turbidity	- SDI ~2.6 - MFI ~1.4 s/L ² - DOC reduced ~70% - Turbidity <0.35 NTU	- High feedwater quality - Compact footprint - Coagulation improves performance	- Chemical addition - pilot scale - Other fouling agents are not fully addressed	[19]
Submerged membrane hybrid system	Flux, fouling mechanisms, SDI	- Pore blocking & cake formation dominate - Optimized operation reduced fouling	- Improved RO feedwater quality - Understanding fouling mechanisms	- Pilot scale - Complex - Higher CAPEX/maintenance	[20]
Hybrid filtration setup consisting of natural adsorbents, GO/MXene- coated cellulose filters working on gravity- driven filtration	SDI, pH, TDS, conductivity, salinity, COD, BOD, TSS, turbidity, total hardness, MPN	- SDI = 2.6 - Satisfactory reduction in all the tested parameters - Partial desalination up to 17.7% along with the pretreatment	- No energy requirement - Cost-effective - Simple and scalable - Dual functioning	Comparatively low water flux Components of the hybrid filter need to be replaced regularly	Present work

Table S2. Comparison of the present study with similar seawater pretreatment studies.

Sample	pH	TDS (PPT)	Conductivity	Salinity	Decrease in
			(mS/cm)	(PPT)	salinity (%)
Unfiltered seawater	7.97	36.3	48.01	34.4	
Filtered					
Uncoated cellulose filter	7.94	35.2	47.82	34.1	0.87
0.25 mg/mL GO-coated filter	7.86	33.6	46.68	33.4	2.91
0.50 mg/mL GO-coated filter	7.54	31.8	44.93	31.9	7.27

0.75 mg/mL GO-coated filter	7.33	30.4	43.04	30.2	12.21
1.00 mg/mL GO-coated filter	7.10	29.1	41.20	28.3	17.73
0.25 mg/mL Ti ₃ C ₂ -coated filter	7.90	34.0	47.56	34.0	1.16
0.50 mg/mL Ti ₃ C ₂ -coated filter	7.76	33.4	4624	33.1	3.77
0.75 mg/mL Ti ₃ C ₂ -coated filter	7.61	32.9	44.11	32.5	5.52
1.00 mg/mL Ti ₃ C ₂ -coated filter	7.43	31.8	43.19	31.1	9.59

Table S3. Water quality parameters of seawater before and after the filtration

References:

- [1] L. F. Greenlee, D. F. Lawler, B. D. Freeman, B. Marrot, and P. Moulin, "Reverse osmosis desalination: Water sources, technology, and today's challenges," *Water Res.*, vol. 43, no. 9, pp. 2317–2348, May 2009, doi: 10.1016/j.watres.2009.03.010.
- [2] N. M. Farhat, C. Christodoulou, P. Placotas, B. Blankert, O. Sallangos, and J. S. Vrouwenvelder, "Cartridge filter selection and replacement: Optimization of produced water quantity, quality, and cost," *Desalination*, vol. 473, p. 114172, Jan. 2020, doi: 10.1016/j.desal.2019.114172.
- [3] C. Cordier *et al.*, "Removal of pathogens by ultrafiltration from sea water," *Environ. Int.*, vol. 142, p. 105809, Sept. 2020, doi: 10.1016/j.envint.2020.105809.
- [4] B. Wu *et al.*, "Gravity-driven microfiltration pretreatment for reverse osmosis (RO) seawater desalination: Microbial community characterization and RO performance," *Desalination*, vol. 418, pp. 1–8, Sept. 2017, doi: 10.1016/j.desal.2017.05.024.
- [5] S.-H. Kim, C.-S. Min, and S. Lee, "Application of dissolved air flotation as pretreatment of seawater desalination," *Desalination Water Treat.*, vol. 33, no. 1–3, pp. 261–266, Sept. 2011, doi: 10.5004/dwt.2011.2650.
- [6] N. Lior, Ed., "Frontmatter," in *Advances in Water Desalination*, 1st ed., Wiley, 2012. doi: 10.1002/9781118347737.fmatter.
- [7] S. Lim and Y. C. Kim, "Optimization of pilot-scale re-mineralization by calcite dissolution using sulfuric acid for seawater desalination processes," *Environ. Sci. Water Res. Technol.*, vol. 9, no. 2, pp. 620–629, 2023.
- [8] A. Al-Ashhab, A. Sweity, L. Al-Hadidi, M. Herzberg, and Z. Ronen, "Antiscalants Used in Seawater Desalination: Biodegradability and Effects on Microbial Diversity," *Microorganisms*, vol. 10, no. 8, p. 1580, Aug. 2022, doi: 10.3390/microorganisms10081580.
- [9] S. Brover, Y. Lester, A. Brenner, and E. Sahar-Hadar, "Optimization of ultrafiltration as pretreatment for seawater RO desalination," *Desalination*, vol. 524, p. 115478, Feb. 2022, doi: 10.1016/j.desal.2021.115478.
- [10] K. T. Chua, M. N. A. Hawlader, and A. Malek, "Pretreatment of seawater: Results of pilot trials in Singapore," *Desalination*, vol. 159, no. 3, pp. 225–243, Nov. 2003, doi: 10.1016/S0011-9164(03)90075-0.

- [11]B. Vital, E. V. Torres, T. Sleutels, M. C. Gagliano, M. Saakes, and H. V. M. Hamelers, "Fouling fractionation in reverse electrodialysis with natural feed waters demonstrates dual media rapid filtration as an effective pre-treatment for fresh water," *Desalination*, vol. 518, p. 115277, Dec. 2021, doi: 10.1016/j.desal.2021.115277.
- [12] T. Altmann, A. Rousseva, J. Vrouwenvelder, M. Shaw, and R. Das, "Effectiveness of ceramic ultrafiltration as pretreatment for seawater reverse osmosis," *Desalination*, vol. 564, p. 116781, Oct. 2023, doi: 10.1016/j.desal.2023.116781.
- [13] L. Ranieri, R. E. Putri, N. Farhat, J. S. Vrouwenvelder, and L. Fortunato, "Gravity-Driven Membrane as seawater desalination pretreatment: Understanding the role of membrane biofilm on water production and AOC removal," *Desalination*, vol. 549, p. 116353, Mar. 2023, doi: 10.1016/j.desal.2022.116353.
- [14] D. Lee, T. Yoon, B. H. Lee, H. Son, Y. Baek, and Y. Lee, "Can prechlorination improve the permeate flux and water quality of gravity-driven membrane (GDM) filtration?," *J. Clean. Prod.*, vol. 368, p. 133203, Sept. 2022, doi: 10.1016/j.jclepro.2022.133203.
- [15]T. Yadai and Y. Suzuki, "Development of softening and ballasted flocculation as a pretreatment process for seawater desalination through a reverse osmosis membrane," *Npj Clean Water*, vol. 6, no. 1, p. 7, Feb. 2023, doi: 10.1038/s41545-023-00226-0.
- [16] J. J. Lee *et al.*, "Novel pre-treatment method for seawater reverse osmosis: Fibre media filtration," *Desalination*, vol. 250, no. 2, pp. 557–561, Jan. 2010, doi: 10.1016/j.desal.2009.09.023.
- [17]B. A. Abdelkader, M. A. Antar, T. Laoui, and Z. Khan, "Development of graphene oxide-based membrane as a pretreatment for thermal seawater desalination," *Desalination*, vol. 465, pp. 13–24, Sept. 2019, doi: 10.1016/j.desal.2019.04.028.
- [18]B. Wu *et al.*, "Optimization of gravity-driven membrane (GDM) filtration process for seawater pretreatment," *Water Res.*, vol. 93, pp. 133–140, Apr. 2016, doi: 10.1016/j.watres.2016.02.021.
- [19] J. J. Lee *et al.*, "Hybrid filtration method for pre-treatment of seawater reverse osmosis (SWRO)," *Desalination*, vol. 247, no. 1, pp. 15–24, Oct. 2009, doi: 10.1016/j.desal.2008.12.008.
- [20] S. Jeong, Y. J. Choi, T. V. Nguyen, S. Vigneswaran, and T. M. Hwang, "Submerged membrane hybrid systems as pretreatment in seawater reverse osmosis (SWRO): Optimisation and fouling mechanism determination," *J. Membr. Sci.*, vol. 411–412, pp. 173–181, Sept. 2012, doi: 10.1016/j.memsci.2012.04.029.