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1. Gram scale synthesis

To evaluate the potential for large-scale synthesis, the reaction was carried out under gram-scale
conditions using the previously optimized protocol. For this, equimolar amounts of reactants:
thiosemicarbazide (10 mmol, 0.911 g) and 4-chlorobenzaldehyde (10 mmol, 1.406 g) were reacted
at RT in the presence of 0.50 mL of KP-CQDs and 30 mL of an ethanol:water (1:4) mixture as the
solvent. The reaction was reached at completion within 10 min, as confirmed by TLC analysis.
The product precipitated as white solid out of the solution and readily separated from the catalyst
and solvent via simple filtration. The residue was washed thoroughly with water to isolate the final
product (3b). The product was obtained in excellent yield; 2.037 g or 95.63%, thereby
demonstrating the scalability and efficiency of this green, catalyst-assisted method (scheme S1
and figure S1).
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Scheme S1. Gram-scale production of 5-(4-chlorophenyl)-1,2,4-triazolidine-3-thione (3b).




FigureS1. Gram scale production of compound 3b: (a) reaction mixture before stirring (b)

reaction mixture after completion of reaction (c) final dried product.

2. Reusability of KP-CQDs
The KP-CQDs demonstrated excellent activity across six reuse cycles, but a noticeable change in
the catalyst’s color was observed during repeated use- from dark brown to a lighter brown tone
(figureS2 a and b). Despite this visual change, the catalyst maintained its characteristic green

emission under UV light (figureS2c), suggesting its preserved optical and catalytic characters.

Figure S2. Change in the colour of KP-CQDs during reusability: (a) Fresh KP-CQDs in daylight;
inset shows fluorescence behavior under UV light (b) KP-CQDs after six cycles in daylight (c)
Reused KP-CQDs in UV-light.

3. Green chemistry metrics
In contemporary synthetic chemistry, the adoption of green chemistry principles has gained
significant importance, driven by the need for environmentally sustainable, safe, and resource-
efficient processes!. The concept of green metrics involves the quantitative evaluation and
optimization of chemical reactions to minimize the use and generation of hazardous substances,
reduce energy consumption, and improve the overall environmental impact of the synthesis 3. In

this study, green metrics were calculated for all synthesized derivatives based on established



parameters, and the results are summarized in Table S1. For compound 3a, detailed green

chemistry calculations are given below-

I. Eco-score (E-score):
An ideal Eco-score value is 100, with the Eco-scale ranging from 0 to 100, categorized as follows:
> 175, excellent; > 50, acceptable; and < 50, inadequate.

E-score has been calculated for the reaction by evaluating the following six parameters-

S. No. Parameter Values Penalty points
1 Yield (100-96.87)/ 2 1.565
2 Price of the reaction components Inexpensive 0
3 Safety (Reactant)* 5+5=10 10
4 Technical setup Common setup 0
5 Temperature/ Time Room temp./ < 1h | 1
6 Workup and purification Basic workup 0
Total penalty points 12.565
*Based on the hazard warning symbols.

*Eco-Score = 100 — the sum of individual penalties.
=100 —12.565
= 88.435 (>75, excellent synthesis).
II. Atom-economy (AE):
AE = MW of product + £ (MW of stoichiometric reactants) x 100
=224.24 +242.25 x 100
=0.9257 x 100
=92.57%
III. Reaction mass efficiency (RME):
RME = Mass of product /X (Mass of stoichiometric reactants) x 100
=217.22 /242.25 x 100
=0.89667 x 100
=89.67%
Higher RME value means cleanness of the reaction.

IV. Environmental factor (E-factor):



E-factor = Mass of waste ~ Mass of product
[Where; mass of waste = total mass of raw materials - total mass of the product]
=242.25-217.22
=25.03
E-factor = 25.03 +217.22
=0.1152
V. Process mass intensity (PMI):
PMI = X (Mass of stoichiometric reactants + solvent) / Mass of product
=(242.25 +3)/217.22
=245.25/217.22
=1.129
{Ideal value of PMI = E-factor + 1}

Table S1. Green chemistry metrics data (E-factor, AE, RME, PMI and E-score) for all the

synthesized compounds.

S.NO Code E-factor AE (%) RME (%) PMI E-score
1 3a 0.115 92.57 89.67 1.129 88.44
2 3b 0.125 92.22 88.90 1.139 88.20
3 3c 0.211 92.72 82.59 1.225 84.54
4 3d 0.217 92.75 82.16 1.232 84.29
5 3e 0.357 90.38 73.71 1.378 80.78
6 3f 0.188 93.41 84.15 1.201 85.05
7 3g 0.157 93.78 86.40 1.169 86.07
8 3h 0.237 93.00 80.84 1.251 83.46
9 3i 0.256 88.62 79.65 1.267 84.94

Our method demonstrated excellent green chemistry metrics, including high atom economy
(88.62-93.78%), an impressive eco-score (80.78-88.44%), and efficient reaction mass
performance (73.71-89.67%). Additionally, the process exhibited a favorable process mass
intensity (1.129-1.378) and a low environmental factor (E-factor <0.357), highlighting the overall

sustainability and minimal waste generation of the reaction system.



4. Yield and concentration of KP-CQDs
The yield (%) and concentration (mg/mL) were calculated using the following equations:
Yield (%) = {Mass of dried KP-CQDs obtained (g) / Mass of biomass used (g)} % 100
[Mass of dried KP-CQDs = Final beaker weight — Initial beaker weight]
=49.023 - 47.928
=1.095 g or 1095 mg

Yield (%) = (1.095 g / 4.000 g) x 100
=27.375%
Concentration (mg/mL) = Mass of dried KP-CQDs (mg) / Volume of KP-CQDs solution (mL)
=1095 mg/ 62 mL
=17.661 mg/mL
The yield of the KP-CQDs was found 27.375% and the concentration was found 17.661 mg/mL.

5. Synthesis of 1,2,4-triazolidine compounds

5.1. Materials and methods
All chemicals used in this study were procured from reliable commercial suppliers, including Avra,
BLD-Pharma, Sigma-Aldrich, SRL and Merck and were employed without further purification.
TECHINSTRO Teflon-lined hydrothermal autoclave (capacity-150 mL) was used for
hydrothermal process. Filtration of the catalyst was performed using a Merck MCE 0.45 pum,
47mm diameter filter membrane. Reaction progress was monitored using thin-layer
chromatography (TLC) performed on silica gel 60 RP-18 F254S plates and visualized under a 3
NOS UV cabinet. HRTEM and SAED analyses were conducted using an FEI Technai G2 F30
microscope operated at 300 kV. XRD analysis of was performed using a Rigaku Ultima IV
diffractometer with CuKoa radiation (A = 0.1541 nm). FT-IR spectra were recorded on a Bruker
FT-IR spectrometer. EDX analysis was carried out using a Hitachi SU8010 system (Japan). UV-
Visible spectrum was obtained using a JASCO V-750 spectrophotometer, while fluorescence
emission spectrum was recorded on a JASCO FP-8850 fluorometer. Melting points of the
synthesized compounds were determined using a digital melting point apparatus and are reported
without correction. 'H,'3C, and 'F NMR spectra were acquired on a JEOL JNM-ECZ400S/L1
spectrometer operating at 400, 100, and 376 MHz, respectively, using DMSO-ds as the solvent and



tetramethylsilane (TMS) as the internal reference. HRMS analyses were performed using a Xevo
G2-XS QToF mass spectrometer (LC-MS/MS) coupled with an Acquity H-Class PLUS UPLC

system.

5.2. General synthetic procedure

A mixture of substituted aldehyde (1 mmol), and thiosemicarbazide (1 mmol) was stirred with KP-
CQDs (0.50 mL) in 3 ml of ethanol:water combination (1:4) at RT. The reaction progress was
monitored by TLC (hexane-ethyl acetate, 7:3). Upon completion, the precipitated product was
separated by simple filtration, and thoroughly washed with water, and dried in an oven at 60 °C.
The catalyst + solvent mixture (found as filtrate) was reused directly in subsequent reactions
without any purification step.

For the synthesis of 3i, the starting material ratios were adjusted:

Synthesis of 3i: Terphthaldehyde (0.5 mmol) was reacted with thiosemicarbazide (1.0 mmol) to

produce a bis-triazolidine product.

5.3. Spectroscopic data of the synthesized compounds

5.3.1. 5-(4-nitrophenyl)-1,2,4-triazolidine-3-thione (3a)
Shiny yellow powder; 97% yield; M.P. 221-224 °C#; 'H NMR (400 MHz, DMSO-dj) 6 11.69 (s,
1H, NH), 8.39 (s, 1H, NH), 8.25 (s, 1H, NH), 8.18 (d, /= 9.2 Hz, 2H, Ar-H), 8.08 — 8.06 (m, 2H,
Ar-H), 8.04 (s, 1H, CH). 3C NMR (101 MHz, DMSO-ds) 6 178.93, 148.07, 141.27, 140.03,
128.70, 124.33. CgHgN4O,S [m/z] 224.0368.
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Figure S3. 'H NMR spectrum of 3a.
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Figure S4. 3C NMR spectrum of 3a.
5.3.2. 5-(4-chlorophenyl)-1,2,4-triazolidine-3-thione (3b)
White powder; 96% yield; M.P. 204-206 °C>; '"H NMR (400 MHz, DMSO-dy) 6 11.46 (s, 1H,
NH), 8.22 (s, 1H, NH), 8.05 (s, 1H, NH), 7.98 (s, 1H, CH), 7.81 — 7.79 (m, 2H, Ar-H), 7.42 — 7.40
(m, 2H, Ar-H). BC NMR (101 MHz, DMSO-dy) 6 178.54, 141.33, 134.74, 133.71, 129.48, 129.22.
CgHgCIN;S [m/z] 213.0127.



ISA-ST-TNS2

—11.46
8.22
8.05

o8
81
80
79
79
42
42
41
40

Cl

|
—

H:0

1,009
i
ﬁ

-
.
th ¥

13.0 125 12.0 11.0 10,5 10.0 95 9.0 85 8.0 .0 55 5.0 45 4.0

a1 oy
Figure S5. 'H NMR spectrum of 3b.
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Figure S6. 3C NMR spectrum of 3b.




5.3.3. 5-(naphthalen-1-yl)-1,2,4-triazolidine-3-thione (3¢)

Off-white fluffy powder; 89% yield; M.P. 209-211 °C®; 'H NMR (400 MHz, DMSO-dy) 5 11.45
(s, 1H, NH), 8.88 (s, I H, CH), 8.32 - 8.29 (m, 2H, NH), 8.19 (dd, J = 7.3, 0.8 Hz, 1H, Ar-H), 7.97
—7.95 (m, 3H, Ar-H), 7.63 — 7.59 (m, 1H, Ar-H), 7.56 — 7.51 (m, 2H, Ar-H). 3C NMR (101 MHz,
DMSO-dy) & 178.35, 141.44, 133.91, 130.99, 130.76, 129.76, 129.37, 127.79, 126.68, 126.28,
126.11, 123.36. C1,H;;N;S [m/z] 229.0674.
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Figure S7. '"H NMR spectrum of 3c.
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Figure S8. 13C NMR spectrum of 3c.
5.3.4. 5-(quinolin-4-yl)-1,2,4-triazolidine-3-thione (3d)
Off-white powder; 89% yield; M.P. 232-235 °Cre¥; 'H NMR (400 MHz, DMSO-d,) 6 11.66 (s,
1H, NH), 8.89 (d, /=4.6 Hz, 1H, Ar-H), 8.84 (s, 1H, CH), 8.45 (s, 1H, NH), 8.25 (d, /= 8.3 Hz,
1H, Ar-H), 8.19 (s, 1H, NH), 8.14 (d, /= 4.6 Hz, 1H, Ar-H), 8.04 (d, /= 8.3 Hz, 1H, Ar-H), 7.79
—7.75 (m, 1H, Ar-H), 7.69 — 7.65 (m, 1H, Ar-H),). 3C NMR (101 MHz, DMSO-d;) & 179.00,
150.64, 148.90, 138.31, 137.82, 130.37, 130.07, 127.93, 125.58, 123.52, 118.46. HRMS for
C11HoN4S (M+H); calculated: 231.0660 and found: 231.0705.
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Figure S11. HRMS spectrum of 3d.
5.3.5. 5-(1H-imidazol-4-yl)-1,2,4-triazolidine-3-thione (3¢)
Shiny beige powder; 82% yield; M.P. 190-193 °Cre¥; 'H NMR (400 MHz, DMSO-dy) 8 12.45 (s,
1H, NH of imidazole), 11.36 (s, 1H, NH), 8.14 (s, 1H, NH), 7.90 (s, 2H, Ar-H), 7.76 (s, 1H, CH),
7.26 (br, 1H, NH). HRMS for CsH;NsS (M+H"); calculated: 170.0456 and found: 170.0500.
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5.3.6. 5-(4-hydroxy-3,5-dimethoxyphenyl)-1,2,4-triazolidine-3-thione (3f)
Fluffy white powder; 90% yield; M.P. 136-139 °C"v; 'H NMR (400 MHz, DMSO-d;) 6 11.30 (s,
1H, NH), 8.80 (br, 1H, OH), 8.12 (s, IH, NH), 7.98 (s, 1H, NH), 7.87 (s, IH, CH), 7.00 (s, 2H,
Ar-H), 3.76 (s, 6H, OCHj3). 3C NMR (101 MHz, DMSO-dy) & 177.83, 148.56, 143.41, 138.12,

124.87, 105.32, 56.60. HRMS for C;oH{3N303S (M+H"); calculated: 256.0711 and found:
256.0757.
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Figure S14. '"H NMR spectrum of 3f.
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5.3.7. 5-(3-phenoxyphenyl)-1,2,4-triazolidine-3-thione (3g)
White fluffy powder; 92% yield; M.P. 201-203 °C¢; '"H NMR (400 MHz, DMSO-dy) 6 11.44 (s,
1H, NH), 8.19 (s, 1H, NH), 8.05 (s, 1H, NH), 7.98 (s, 1H, CH), 7.58 — 7.57 (m, 1H, Ar-H), 7.49
(dd, J=6.7,1.1 Hz, 1H, Ar-H), 7.39 — 7.33 (m, 3H, Ar-H), 7.11 — 7.07 (m, 1H, Ar-H), 6.97 — 6.94
(m, 3H, Ar-H),). BCNMR (101 MHz, DMSO-dy) 6 178.52,157.27 (d,J=7.9 Hz), 141.94, 136.91,
130.85, 130.61, 123.83 (d, /= 13.4 Hz), 120.70, 118.77, 117.81. C14H3N;0S [m/z] 271.0779.
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Figure S17. '"H NMR spectrum of 3g.
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5.3.8. 5-(3-ethoxy-4-hydroxyphenyl)-1,2,4-triazolidine-3-thione (34)
White powder; 87% yield; M.P. 172-175 °C%; 'TH NMR (400 MHz, DMSO-ds) 6 11.22 (s, 1H,
NH), 9.36 (s, 1H, OH), 8.08 (s, 1H, NH), 7.93 (s, 1H, NH), 7.87 (s, 1H, CH), 7.42 (d, /= 1.8 Hz,
1H, Ar-H), 6.97 (dd, J = 8.2, 1.8 Hz, 1H, Ar-H), 6.74 (d, J = 8.1 Hz, 1H, Ar-H), 4.03 (q, J = 7.0
Hz, 2H, CH,), 1.30 (t, J = 7.0 Hz, 3H, CH3). 13C NMR (101 MHz, DMSO-dy) 6 177.81, 149.50,
147.76, 143.43, 126.07, 122.87, 115.73, 110.84, 64.37, 15.24. C1,H3N30,S [m/z] 239.0728.
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Figure S19. 'H NMR spectrum of 3h.
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Figure S20. 3C NMR spectrum of 3h.



5.3.9. 5,5'-(1,4-phenylene)bis(1,2,4-triazolidine-3-thione) (3i)
White fluffy powder; 90% yield; M.P. 202-204 °C>; '"H NMR (400 MHz, DMSO-dy) 6 11.44 (s,
2H, NH), 8.19 (s, 2H, NH), 8.01 (d, J = 5.3 Hz, 2H of NH + 2H of CH), 7.77 (s, 4H, Ar-H). 13C

NMR (101 MHz, DMSO-d;) 6 178.54, 142.16, 135.92, 128.04. C;oH2NsS, [m/z] 280.0565.
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Figure S21. "H NMR spectrum of 3i.
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Figure S22. 3C NMR spectrum of 3i.
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6. Molecular docking

Figure S23. Superimposed pose of (A) Co-crystalized B54 (green), and redocked pose
(cyan), (B) Co-crystalized pose of 511 (purple), and redocked pose (yellow).
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Figure S24. 2D representation of 3H23 docked with all selected molecules. (A) 3H23-3a, (B)

3H23-3i, (C) 3H23-3e, (D) 3H23-3c, (E) 3H23-3d, (F) 3H23-3h, (G) 3H23-3g, (H) 3H23-3f, ()
3H23-3b.
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Video 1. 3D representation of 3H23 docked with 9 selected molecules.
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Figure S25. 2D representation of 4DBW docked with 9 selected molecules. (A) 4DBW-3c, (B)
4DBW-3d, (C) 4DBW-3a, (D) 4DBW-3g, (E) 4DBW-3e, (F) 4DBW-3i, (G) 4DBW-3b, (H)
4DBW-3f, (I) ADBW-3h.
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Video 2. 3D representation of 4DBW docked with 9 selected molecules.

7. ADMET parameters
Table S2. List of the ADMET parameters and their acceptable range.

Pharmacokinetic Acceptable
Parameter Notes
properties range
Molecular Weight <500 -
Indicates better oral
TPSA <140 A2
bioavailability
Absorption S
Lipinski rule Accept -
Caco-2 > -5 Indicates intestinal permeability.
HIA >0.85 Closer to 1 is better.
Distribution BBB >0.5 For CNS drugs: higher values
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preferred.
>0.9 indicates high binding, may
PPB <09
reduce free drug availability.
To reduce metabolic drug-drug
CYP2B6 _inhibitor <0.5
interactions.
Metabolism

Indicates good metabolic

HLM >0.2
stability.

High renal clearance may

CLr <0.7
decrease the drug's half-life.
Excretion
Log-transformed, but longer half-
T50 >-0.3
life preferred.
Neurotoxicity >-2.5 Less neurotoxic is better.
Toxicity
DILI <0.7 Closer to 0 = safer profile.
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