Supplementary Information (SI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2025

All-lead-free Cs₂SnCl₆/Cu₂ZnSnS₄/CuFeO₂ cascade band-aligned multilayer heterostructures for solar-driven hydrogen production from wastewater

Amira H. Ali ¹, Ashour M. Ahmed ², Mohamed A. Basyooni-M. Kabatas ^{3,4*}, Mamduh J. Aljaafreh ², Mohamed Shaban ⁵, Mohamed Rabia ¹, Ahmed A. Abdel-Khaliek ⁶

- ¹ Nanomaterials Laboratory, Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
 - ² Department of Physics, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- ³ Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
- ⁴ Department of Nanotechnology and Advanced Materials, Graduate School of Applied and Natural Science, Selçuk University, Konya 42030, Turkey
- ⁵ Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
- ⁶ Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
 - * Corresponding author: M.A. B.-M. K. (m.kabatas@tudelft.nl & m.a.basyooni@gmail.com).

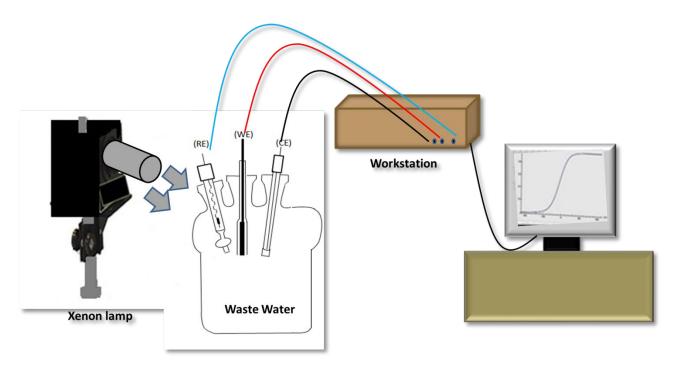


Figure S1. Schematic representation of the experimental setup used to evaluate the $CuFeO_2/Cu_2ZnSnS_4/Cs_2SnCl_6$ -based hydrogen generation system.

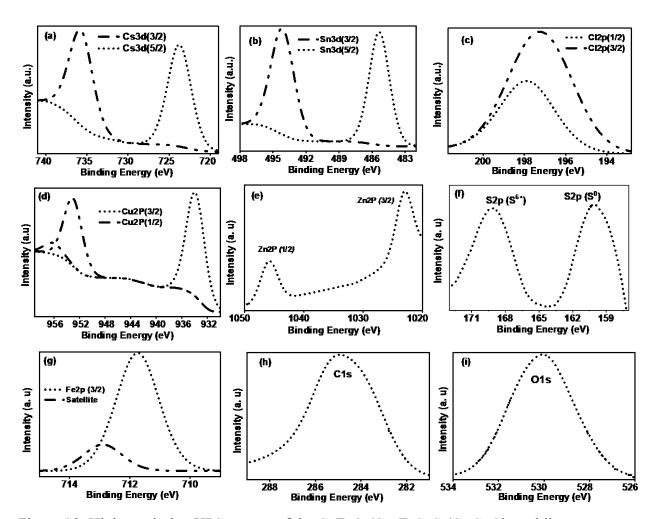


Figure S2. High-resolution XPS spectra of the CuFeO₂/Cu₂ZnSnS₄/Cs₂SnCl₆ multilayers.