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1 Derivation of the demagnetising energy term
Writing the second Maxwell equation in the absence ocellular alterations following stimulation with such particles are to be attributed
to mechanical origin external field yields ∇ · B = µ0∇ · (Hd + M) = 0 and hence ∇Hd = −∇ · M , with B the magnetic induction,
Hd the demagnetising field, M the magnetisation and µ0 the free space permeability. Note that here, only the part of the dipolar field
occurring inside the magnetic body, the so-called demagnetising field, is considered. From this equation, it is possible to define magnetic
volume charges as ρm = −∇ ·M in the bulk and surface charges σm = M · n̂ where n̂ is the normal to the surface. When considering
only the dipolar interaction, the ground state is then given by the magnetic configuration that minimises the volume and magnetic
surface charges, that will minimise the demagnetising field and therefore minimises the energy. Thus, the shape of the sample strongly
influences the demagnetising energy, giving rise to an anisotropy referred to as shape anisotropy and some preferential axis or planes
where the magnetisation prefers to lay. To illustrate this, let us consider the case of a uniformly magnetised thin ellipsoid with principal
axis along (x, y, z) such that the semiaxis R >> h.

The demagnetising field can be expressed simply in terms of the demagnetising coefficients Ni as:

Hd,i = −NiMi (S1)

In the chosen geometry the tensor N has non-zero terms only in the diagonal and its trace is equal to 1. The demagnetising field in
polar spherical coordinates (θ, ϕ), reads as:
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The energy is calculated as:
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which becomes:

εd =
1

2
µ0M

2
sat

(
NR sin2 θ +Nh cos2 θ

)
(S4)

with the relation NR = 1−Nh
2

We now introduce a more meaningful angle, δ, which is the angle between the easy plane of the ellipsoid and the magnetisation
vector and rewrite the demagnetisation energy as function of it. Indeed δ allows to easily indicate the in plane and out of plane
component of the magnetisation. Being δ = π/2− θ
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Expressing the previous equation as energy (E) instead of energy density (ε) we obtain:
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2 Supplementary movies
• Motion of the microdisc in a viscous environment: same as Fig. 8 (n = 0.2, g = 0), Supplementary_movie_1.mp4

• Motion of a microdisc trapped in a predominantly elastic material: same as Fig. 9 (n = 4× 10−3, g = 2),
Supplementary_movie_2.mp4

• Motion of a microdisc in a viscoelastic material, the viscous friction being comparable to the elastic resistance:
same as Fig. 10 (n = 0.1, g = 0.2), Supplementary_movie_3.mp4
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