Eco-friendly Nanoparticles from *Fusarium solani* Suppress Biofilms and Quorum Sensing in *Pseudomonas aeruginosa*

Karokh Ali Khdir 10, Sirwan Muhsin Muhammed 20

¹Biology Department, College of Education, University of Sulaimani, Sulaymaniyah,

Kurdistan Region, 46001, Iraq

²Biology Department, College of Science, University of Sulaimani, Sulaymaniyah,

Kurdistan Region, 46001, Iraq

Corresponding author

Karokh Ali Khdir

¹karokh.khdir@univsul.edu.iq

²sirwan.muhammed@univsul.edu.iq

Identification tests	Results			
Gram staining	Gram negative bacilli, singly or in pairs			
Cetrimide agar	The colonies were round, convex and mucoid with blue-green and yellow-green pigmentations			
MacConkey agar	Colonies were flat, smooth and non- lactose fermenter with a little pigmentation			
Catalase	Positive			
Oxidase	Positive			
Highly automatic BD Phoenix TM M50 identification system	Showed P. aeruginosa			

Table S1. List of phenotypic characteristics used in identification of *P.aeruginosa*

Samples	Annealing (°C)	D (nm)	δ (nm ⁻²)	3	d-spacing (Å)	ρ_{χ} (g/cm ³)	SSA (m²/g)	Porosity (%)
AgNPs	80	18.49	0.00293	0.00574	2.356	10.53	30.82	97.15
	150	22.34	0.00200	0.00475	2.358	10.51	25.56	97.03
	200	18.29	0.00299	0.00580	2.358	10.52	31.19	97.05
	250	20.07	0.00248	0.00528	2.356	10.53	28.40	97.04
	80	29.23	0.00117	0.00322	2.089	8.91	23.03	96.19
CuNPs	150	26.68	0.00141	0.00352	2.085	8.96	25.11	96.65
	200	27.18	0.00135	0.00345	2.086	8.95	24.67	96.42

250	28.33	0.00125	0.00331	2.086	8.95	23.65	96.31
					0.50		, , , , ,

Table S2. Crystallite size (D), dislocation (δ), strain (ϵ), d-spacing (\mathring{A}), X-ray density ($\mathring{\rho}_x$), specific surface area (SSA), and porosity percentage of AgNPs and CuNPs annealed at different annealing temperatures.

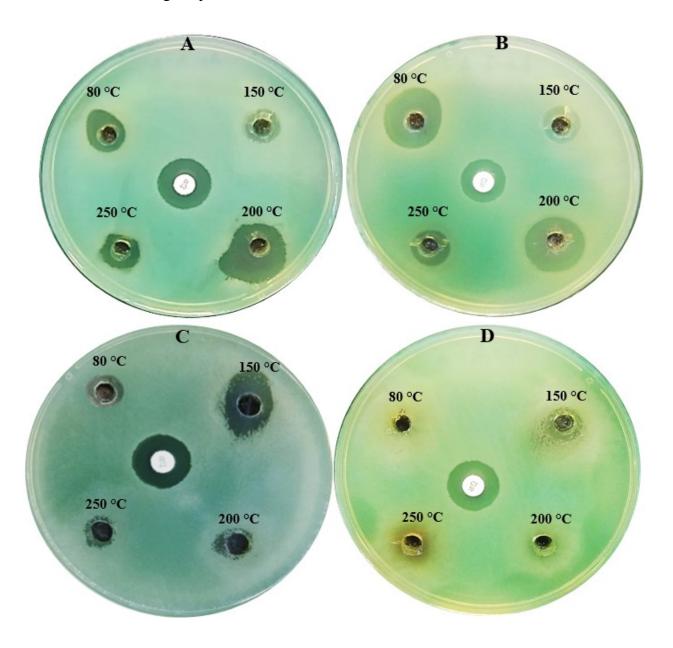


Figure S1. Antibacterial activity of AgNPs and CuNPs at different annealing temperatures of 80, 150, 200, and 250°C using well diffusion agar method. A (AgNPs against ATCC), B (AgNPs against isolate), C (CuNPs against ATCC), and D (CuNPs against isolate). Positive control is colistin (10 $\mu g/disc$).