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Table S1. Comparison table demonstrating learning-forgetting-relearning imparted on the neuromorphic 
devices.

Sl.No Active 
Material

Two/three
-terminal

Stimuli Number 
of 

relearnin
g sessions 

held

Habituation/fatigue Consolidation Ref 
No

1 ZnO NPs Two Optical 1 ˟ ˟ 1

2 HfOx/BP Two Electrical/Optical 6 ˟ ˟ 2

3 Graphene TiO2 Two Optical 3 ˟ ˟ 3

4 P-MoSe2/PxOy Two Electrical/optical 5 ˟ ˟ 4

5 p-AlGaN/n-
GaN/Pt NPs

Two Optical 1 ˟ ˟ 5

6 CsPbIBr2 Two Optical 1 ˟ ˟ 6

7 a-Ga2O3 Two Electrical/optical 2 ˟ ˟ 7

8 Cu2O/WO3 Two Electrical/optical 2 ˟ ˟ 8

9 GeO2 

NP:PMMA
Two Electrical 4 ˟ ˟ 9

10 Al2O3/Al-HQ Two Electrical 1 ˟ ˟ 10

11 Ag@TiO2 
NWN

Two Electrical 1 ˟ ˟ 11

12 C8-
BTBT/PS/PAA

Three Optical 1 ˟ ˟ 12

13 a-ZnAlSnO Three Electrical/Optical 2/1 ˟ ˟ 13

14 DNTT/MoS2 Three Optical 1 ˟ ˟ 14

15 ITO-graphene Three Optical 2 ˟ ˟ 15

16 MoS2 Three Optical 1 ˟ ˟ 16

17 TiN/LixSiOy/Pt Two Electrical ˟ ✔ ˟ 17

18 Au/LiTaO3/Pt Two Electrical ˟ ✔ ˟ 18

19 TiO2−x Four Electrical ˟ ✔ ˟ 19
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20 poly-Si/
SiO2/Si3N4

Three Electrical ˟ ✔ ˟ 20

21 Pt/LLTO/Pt Two Electrical ˟ ✔ ˟ 21

22 W/HfOx/Ti Two Electrical ˟ ✔ ˟ 22

23 ZnO Nanowire Two Electrical/optical ˟ ✔ ˟ 23

24 IGZO-HfO2 Two Electrical ˟ ✔ ˟ 24

25 TiOx Two Electrical ˟ ✔ ˟ 25

26 MSC-based
electrolyte-

gated MPEC 
ITO 

Three Electrical ˟ ✔ ˟ 26

27 Supramolecular 
nanofibre

Two Optical 32 ✔ ✔ This 
work

Figure S1 Previous reports on the remarkable humidity and UV sensitivity of the supramolecular 
nanofibre device. (a) Variation of sensitivity with RH. Reproduced with permission from Mogera 
et al., Sci. Rep., 2014, 4, 1–9.27 Copyright 2014 Nature Portfolio.  (b) Ultrafast humidity response. 
Reproduced with permission from Mogera et al., Sci. Rep., 2014, 4, 1–9.27 Copyright 2014 Nature 
Portfolio. (c) Humidity-based memory behavior. Reproduced with permission from Mogera et al., 
ACS Appl. Mater. Interfaces, 2017, 9, 32065–32070.28 Copyright 2017 American Chemical 
Society. (d) C-V curves of the device with varied RH. Reproduced with permission from Kundu 
et al., Nano Energy, 2019, 61, 259–266.29 Copyright 2019 Elsevier. (e) Photoresponse of the 
device. Reproduced with permission from Kundu et al., ACS Appl. Mater. Interfaces, 2023, 15, 
19270–19278.30 Copyright 2023 American Chemical Society. (f) High responsivity for UV light. 
Reproduced with permission from Kundu et al., ACS Appl. Mater. Interfaces, 2023, 15, 19270–
19278.30 Copyright 2023 American Chemical Society. (g) Persistent photoconductivity exhibited 
under UV exposure. Reproduced with permission from Rao et al., Nanoscale, 2023, 15, 7450–
7459.31 Copyright 2023 Royal Society of Chemistry. 
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 (h) Emulation of synaptic functionalities based on the phenomenon of persistent 
photoconductivity. Reproduced with permission from Rao et al., Nanoscale, 2023, 15, 7450–
7459.31 Copyright 2023 Royal Society of Chemistry. 

Figure S2 (a) Optical image of the entire device connected to a source measure unit. (b) Magnified 
optical image showing the nanofibres spread across the interdigitated electrodes. (c) I-V sweep 
from 0 to 1.2 V.

Figure S3 Normalized current response at different RH for 50 optical pulses exhibiting 
saturation around 30 pulses.
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Figure S4 % of current decay during ti (200 ms) between optical exposure at varied RHs. Inset 
shows the photoresponse for two optical pulses depicting the method of % decay calculation and 
the equation used is shown on the top. 
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Figure S5 (a) Schematic of the device and the optical microscopy image of the nanofibres spread 
across the gap between Ti electrodes. (b-g) Six devices and their photoresponse studied at 70% 
RH. 20 optical pulses of 50 ms pulse width (tw) and 50 ms pulse interval (ti) are applied. (h) Paired 
pulse facilitation (PPF) index of all the six devices.

Note S1

The energy consumption of the device is calculated using the equation: 𝐸 = 𝑉 × 𝐼 × 𝑡

Where V is the reading voltage, 𝐼 is the peak current, and 𝑡 is the pulse duration.

Substituting the values for V = 1 𝑉, 𝐼 (for varied RH), and 𝑡 = 0.5 𝑠, the energy consumption of the 
device per unit pulse of 0.5 s is found to be 𝐸 = 1 × 𝐼 × 0.5 = x 𝑛𝐽 per pulse.

The energy consumption of x 𝑛𝐽 per pulse is for the whole device with several nanofibres spread
across the Ti electrodes. However, each nanofibre across the Ti electrodes acts as a synaptic
junction.

On average, there are 15 nanofibres spread across the electrodes in a single IDT pattern. There are 
85 IDT patterns, and therefore, the whole device consists of 85 × 15 = 1275 nanofibres.
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Therefore, the power consumption per synaptic junction is given by;
x nJ/ 1275 = y 𝑝𝐽.

RH (%) I = (I1-I0) (nA) Energy per optical 
pulse (x nJ)

Energy per synaptic 
junction (y pJ)

40 0.19 0.09 0.07
50 3.04 1.52 1.19
60 19.15 9.57 7.51
70 35.96 17.98 14.1
80 60.52 30.26 23.73
90 107.31 53.65 42.08

I0 is the dark current and I1 is the photocurrent achieved for the optical pulse 

Figure S6 Energy consumption per optical pulse (red curve) and per synaptic junction (blue curve) 
at different RHs.
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Figure S7 The variation of the parameters (a) τ1 (b) τ2 (c) a1 and (d) a2 with increasing RH for the 
decay after the application of 50 optical pulses.

Note S2

All the decay curves shown in Figure 2b are fitted with the double exponential function as shown 
below:

Δ𝐴
Δ𝐴𝑚𝑎𝑥

= 𝐴0 + 𝑎1𝑒
‒ 𝑡

𝜏1 + 𝑎2𝑒
‒ 𝑡

𝜏2

Where,

ΔA = At – A0 with At being the current at time ‘t’ and A0 is the dark current

ΔAmax = Amax – A0 with Amax being the maximum current that is achieved during the optical 
exposure

a1 and a2 are the initial amplitudes of the fast and slow decay, respectively
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τ1 and τ2 are the time constants for the fast and slow decay, respectively.

The τ1 and τ2 values alone indicates the rate of fast and slow decay. These values are decreasing 

with increase in RH showing that the decay becomes faster during both the processes with increase 

in RH. However, the consolidation parameter τ2-τ1 defines the temporal distinction between the 

fast and slow decay. With, τ2-τ1 being larger it can be said that the fast and slow decay processes 

are well-separated with slower decay starting much later to the faster one. Whereas, if τ2-τ1 is 

smaller, it indicates that both fast and slow processes overlap with each other with no clear 

distinction. This quantity has thus been used as a consolidation parameter where a larger τ2-τ1 

suggest an effective consolidation with less interference between the decay processes and a smaller 

τ2-τ1 indicates a poorer consolidation due to increased interferences as the fast and slow processes 

overlap. a1 and a2 are the initial amplitudes of fast and slow decay. a1 showing an approximately 

increasing trend with RH might indicate a larger contribution from the fast process with increased 

RH which further supports the poor consolidation at high RH. a2 shows a decreasing trend with 

RH which again confirms that the slower decay is starting at a much later stage to the faster one at 

high RH. The parameters obtained from the equation thus proves that the faster decay dominates 

at high RH leading to poorer consolidation and the slower decay at low RH resulting in effective 

consolidation. In all the further studies, the consolidation parameter τ2-τ1 is considered alone for 

explaining the extent of consolidation as a1 and a2 follows a similar trend as explained here.

Figure S8 Experimental learning-forgetting-relearning curves at (a) 40% and (b) 80% RH.
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Figure S9 Learning-forgetting-relearning emulated at (a) 40% (normalized with respect to ~1.6 
nA) and (b) 80% RH (normalized with respect to ~58.8 nA) with the initial learning performed 
with 20 pulses. Number of pulses required for consecutive learnings at (c) 40% and (d) 80% RH. 
The variation of τ2-τ1 (consolidation parameter) with the learning process at (e) 40% and (f) 80% 
RH. 

Note S3

As explained in Figure 3, at 40% RH, the consolidation parameter (τ2-τ1) is almost the same during 

several learnings (Figure S9e) indicating faster consolidation due to lesser learning. However, at 

80% RH, it is observed that τ2-τ1 slightly increases with learnings but not significantly as observed 

in Figure 3f which might be due to the lesser number of pulses (20 as opposed to 30 initial pulses 

in Figure 3) used for learning leading to faster consolidation. 
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Figure S10 (a) Optical response at 40% RH for 50 pulses with the parent curve (blue) and the 
curve after 10 minutes time gap (green). (b) Recovery of the optical response (blue curve) after 
exposure to 70% RH for 15 minutes and the decrease in photoresponse with 30 minutes time gap 
(green curve). (c) Recovery of the photoresponse again after exposure to 70% RH for 15 minutes.

Figure S11 Photocurrent at (a) 50% (normalized with respect to ~10.9 nA), (b) 60% (normalized 
with respect to ~35.6 nA), (c) 70% (normalized with respect to ~91.2 nA) and (b) 90% RH 
(normalized with respect to ~188.2 nA) studied by varying the time gap.
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Figure S12 Variation in (a) current and (b) consolidation parameter τ2-τ1 with time at different 
RH.
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Figure S13 Photoresponse with increasing number of pulses at (a) 40% and (b) 70% RH. (c) 
Variation in photoresponse with the increase in the number of pulses at 40 and 70% RH.
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Figure S14 Decay curves with varying number of pulses at (a) 40% and (b) 70% RH. Variation in 
the consolidation parameter τ2-τ1 at (c) 40% and (d) 70% RH. (e) Comparison of variation in the 
consolidation parameter at 40 and 70% RH. 

Note S4

Initially, if a lesser number of pulses are used for learning, fatigue does not occur immediately but 

progresses as the number of pulses increases (Figure S13a) at 40% RH (up to 10 pulses, the 

photocurrent gradually increases with the number of pulses after which it decreases) whereas the 

learning increases with the increase in the number of pulses at 70% RH (Figures S13b, 13c). 

Nonetheless, the consolidation parameter τ2-τ1 (Figure S14) increases with the increase in the 

number of pulses. However, it has to be noted that the decrement in the current response is only 

~30% (Figure S13c) with 60 pulses at 40% RH which is similar to the photoresponse for the second 

set of pulses in Figure 4a (which apparently showed larger τ2-τ1). So, the gradual increase in the 

number of pulses outweighs the fatigue induced resulting in better consolidation. This again 

indicates that a greater number of optical exposures and increased electric field-induced stress 

results in faster fatigue at low RH but does not cause a lot of change at high RH.



S14

Figure S15 Learning profile exhibited at (a) 50% (normalized with respect to ~10.8 nA), (b) 60% 
(normalized with respect to ~16.6 nA), (c) 80% (normalized with respect to ~125.1 nA) and (b) 
90% RH (normalized with respect to ~127.1 nA). The four stages of learning are 1-potentiation, 
2-habituation, 3-depression, and 4-spontaneous forgetting.
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Figure S16 (a) Photocurrent and decay variation with RH during the application of 200 pulses. (b) 
Comparison of the consolidation parameter variation (τ₂ - τ₁) without and with depression 
behavior, as observed in Figures 2c and 5e, respectively.

Note S5

The equations used to obtain the non-linearity factor for potentiation and depression are;

) for potentiation𝐺𝑃 = 𝐺𝑚𝑖𝑛 + 𝐺0(1 ‒ 𝑒
‒ 𝛾𝑃𝑁

 for depression𝐺𝐷 = 𝐺𝑚𝑎𝑥 ‒ 𝐺0(1 ‒ 𝑒
‒ 𝛾𝐷(1 ‒ 𝑁)

Where,

 and  represents the conductance during potentiation and depression, respectively𝐺𝑃 𝐺𝐷

 and are the minimum and the maximum conductance values𝐺𝑚𝑖𝑛 𝐺𝑚𝑎𝑥 

 and  in the case of potentiation and depression, respectively 
𝐺0 =

𝐺𝑚𝑎𝑥 ‒ 𝐺𝑚𝑖𝑛

1 ‒ 𝑒
‒ 𝛾𝑃

𝐺0 =
𝐺𝑚𝑎𝑥 ‒ 𝐺𝑚𝑖𝑛

1 ‒ 𝑒
‒ 𝛾𝐷

 and  are the non-linearity factors for potentiation and depression, respectively which is 0 in 𝛾𝑃 𝛾𝐷

the ideal case
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It must be noted that the  at all RHs are between 3 to 4.5. This indicates that the conductance 𝛾𝑃

saturates and reaches Gmax with a small number of pulses.32 This is due to the saturation in the 
number of photogenerated charge carriers. Further,   is comparatively lower with the values 𝛾𝐷

ranging between -0.7 to 2. The  when the depression curve is concave-down and  𝛾𝐷 < 1 𝛾𝐷 > 1

when the curve is convex-up.33

Figure S17 Photoresponse at (a) 40% (normalized with respect to ~2 nA) and (b) 80% RH 
(normalized with respect to ~90.4 nA) with the application of 50 optical pulses consecutively.

Note S6

Instead of 200 pulses, even if 50 pulses are applied continuously (Figure S17) with little time to 

decay, habituation and depression can be significantly observed at 80% RH and mildly at 40% RH 

with consolidation parameters being ~14 s and 46 s, respectively (quite similar to that obtained by 

applying 200 pulses continuously). Thus, if optical pulses are fed to the device with little to no 

time after the response has reached habituation will eventually lead to depression. Even though 

40% RH is a less favorable environment, since the learning is poor, depression occurs at a slower 

rate but due to increased learning at high RH (a more favorable environment), depression is faster. 
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