Microfluidic fiber-spinning chemistry for hydrophilic-hydrophobic Janus membranes towards efficient interfacial solar evaporation

Yin Li, Kebing Chen, Liangliang Zhu, Qing Li*, Su Chen

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing 210009, P.R. China.

Corresponding Author

*Q. Li. E-mail: liqing1128@njtech.edu.cn

Supplementary figures

Figure S1. SEM images and size distributions of TPU, TPU-CNT, PAN and PAN-TA-Fe³⁺ fibrous membrane.

Figure S2. Water evaporation performance of TPU-CNT fibrous membrane with different CNT content.

Figure S3. Photothermal conversion efficiency of PAN-TA-Fe³⁺/TPU-CNT fibrous membrane with different CNT content.

Figure S4. Optical photographs of PAN-TA-Fe³⁺ fibrous membrane before and after evaporation in 10 wt% NaCl for 8h.

Figure S5. Ambient temperature during evaporation from 9:00 am to 17:00 pm.

Table S1. The structural properties of PAN-TA-Fe³⁺, TPU-CNT membrane.

Sample	S_{BET} (m ² /g)	pore size (nm)	Thickness (µm)
PAN-TA-Fe ³⁺	22.906	56.62	102
TPU-CNT	2.4139	70.38	64

Calculation of Gas-Liquid Enthalpy of PAN-TA-Fe³⁺/TPU-CNT

To determine the gas-liquid enthalpy of the Janus membrane (h_{LV}) , the following equation is used:

 $h_{LV} *= h_{lv} m_w / m *$

(3)

The gas-liquid enthalpy of water ($\approx 2260 \text{ J} \cdot \text{g}^{-1}$), m_w is the evaporation rate of water in the dark field ($\approx 0.128 \text{ kg} \cdot \text{m}^{-2} \cdot \text{h}^{-1}$), and m^* is the evaporation rate of the Janus membrane in the dark field ($\approx 0.149 \text{ kg} \cdot \text{m}^{-2} \cdot \text{h}^{-1}$). Using this equation, $h_{LV} \approx 1941.47 \text{ J} \cdot \text{g}^{-1}$.

Heat Loss Analysis of Interfacial Solar Evaporators

Heat loss in interfacial solar evaporators arises from (1) convection, (2) radiation, and (3) conduction. The calculations for each are as follows:

(1) Convection Heat Loss

Convection heat loss (P_{conv}) is calculated using Newton's law of cooling:

$$P_{conv} = h_{conv}(T_2 - T_1) \tag{4}$$

Here, h_{conv} is the convection heat transfer coefficient (5 W·m⁻²·K⁻¹), T_2 is the temperature at the evaporation interface (315.9 K), and T_1 is the surrounding water vapor temperature (309.2 K). Using this equation, $P_{conv}\approx 33.5$ W·m⁻², accounting for approximately 3.35% of the total irradiation energy. (2) Radiation Heat Loss

Radiation heat loss (P_{rad}) occurs when the Janus membrane radiates heat to the air and depends on surface and environmental temperatures. It is calculated using Stefan Boltzmann's law: $P_{rad} = \varepsilon \sigma (T_2^4 - T_1^4)$ (5)

Here, σ is the Stefan-Boltzmann constant (5.67 × 10⁻⁸ W·m⁻²·K⁻⁴), ε is the optical absorption of the Janus membrane (92.5%), T_2 is the temperature at the evaporation interface (315.9 K), and T_1 is the surrounding water vapor temperature (309.2 K). Thus, under one-sun conditions, P_{rad} is approximately 42.92 kW·cm⁻², accounting for 4.29% of the total solar energy.

(3) Conduction Heat Loss

The use of thick insulating foam minimizes heat loss to bulk water. The conduction heat loss experiment was divided into three parts: the top absorbing layer, the middle insulating layer, and the bottom water layer. A foam material with extremely low thermal conductivity was used for the insulating layer. Its thickness and low conductivity ensured that heat conduction losses during the experiment were negligible.