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1 Experimental details for acquiring the PLE maps

All the two-dimensional (2D) IR PLE spectra shown in this work were recorded using
a home-built setup. Each sample was excited with a pulsed Xe-lamp (custom adapted
from Edinburgh Instruments, Xe900-xP920) and excitation wavelengths were spectrally
selected with a 300 mm focal length grating monochromator (Acton SpectraPro 2355).
Emission was collected at 90° and analyzed using a 150 mm focal length grating spectro-
graph (Acton SpectraPro 2156) with a liquid nitrogen cooled extended InGaAs photodi-
ode array detector (Princeton Instruments OMA V:1024/LN-2.2) sensitive up to 2.2 pm.
Spectra were recorded with 5 nm steps in excitation wavelength. Appropriate filters were
used to eliminate stray light and higher order diffractions from the spectrometers and
all spectra were corrected for detector and spectrograph efficiency, filter transmission, re-
absorption within the cell and (temporal and spectral) variations of the excitation light
intensity.

2 Fitting details

As mentioned in the main text of this publication, a Graphical User Interface (GUI)
has been developed under the name PLEfit2D, which can be found at the PLEfit2D
website https://plefit2d.uantwerpen.be. In this section, we explain different aspects of
the implementation of our fitting model within this GUI, such as the exact procedure
and algorithms used to perform the actual fit and to determine error bars on the model
parameters.

2.1 Extracting the SWCNT diameter from a PLE map

As explained in the main text, we use slightly adapted versions of the empirical relations
first derived by Bachilo et al.! to extract the SWCNT diameter from a PLE map, to then
be used in the diameter-dependence of all phonon side band amplitudes as well as the
position of the RBM phonon side band. These empirical relations are of the form:
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with 7j; the transition frequencies (in cm™') for the first (j = 1) and second (j = 2)
optical transitions respectively and d the SWCNT diameter in nm. This equation con-
tains 8 distinct parameters: two pairs (By, Bj) for each optical transition j and four A7

parameters which are different for both optical transitions as well and also depend on the
SWCNT modulus p := (n —m) mod 3 =1,2.

By treating d and « as continuous variables, (S1) can be inverted and the diameter d can
be extracted from 777 and s. The parameters in (S1) depend also on the specifics of
the sample, such as the inner and outer environment of the SWCNTs.23 As explained in
the main text, this does not interfere with the accuracy of a fit with our model and we
use a single set of parameters for the sake of consistency. In particular, we employ those
obtained for empty SWCNTSs in an aqueous solution with sodium deoxycholate. These
parameters were first determined in reference 2 by fitting equation (S1) to peak positions
obtained from 1D fits of different slices through the PLE maps. Later, the parameters were
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refined by directly fitting the empirical relations to the PLE maps using this fitting model,
including PLE maps of HiPco and ARC-discharge SWCNT's to provide a sufficiently broad
diameter range in the PLE map.® Table S1 lists the resulting parameters.

Transition B B A= A2
11 147.67  1097.40 —636.12 318.35
99 145.60 581.37 1114.73 —1397.35

Table S1: Parameter values for equation (S1) as used in our GUI, determined
for empty SWCNTSs in aqueous solution with sodium deoxycholate.3

2.2 Background fitting

Remember that for a PLE map containing /N distinct chiralities, our model consists of N
two-dimensional (2D) basis functions F; which are combined in a linear regression scheme
to obtain amplitudes for each:

IE?(l?ema Eex) = Z AiE(Eem7 Eex)- (82)

Additionally, to take into account any background in the PLE maps, a few (1V,) more
basis functions can be added. Three different options for backgrounds exist in the GUI:

(1) no background: N, = 0.

(2) a constant background which is implemented as a basis function Fy,; = 1, such
that its amplitude directly yields the constant. In this case N, = 1.

(3) a bilinear background in emission and excitation energy, implemented by including
Ny, = 4 additional basis functions

FN+1 - ]-7 FN+2:Eem7 FN+3:E6X7 FN+4:EeX'Eem-

None of these background basis functions add any additional parameters to the fitting
model that need to be iteratively optimised, since the amplitudes of the basis functions
are analytically determined by the linear regression scheme in equation S2.

2.3 Procedure & algorithms

The actual fit itself is performed by the MATLAB® function lsqcurvefit using a
trust-region algorithm with upper and lower bounds on the model fit parameters. Each
iteration generally consists of two parts: first the model parameters (such as peak posi-
tions and linewidths) are used to create a set of 2D basis functions, then their weights
(amplitudes) are calculated in a linear regression scheme. In the first part upper and
lower bounds on the parameters can be imposed, though good initial values are always
key. The second part ensures that the optimal amplitudes are instantly calculated after
each adjustment to the model parameters. However, care must be taken in this part
because only non-negative values are physically relevant but standard linear regression
does not impose this restriction. Although numerical convergence algorithms exist to
solve the non-negative least-squares (NNLS) problem,* they are significantly slower and



lack the analytical robustness of standard linear regression. Since speed may be a critical
consideration for some use-cases of our code, alternative ways of dealing with negative
amplitudes are implemented in the algorithm and can be selected. These are discussed
further down in this section.

The fitting is typically performed in batches of iterations, halting the fit after a selected
maximum number of steps have been taken to allow for user inspection and, if necessary,
intervention. Examples of this include peaks which have grown unphysically wide or
migrated to coincide with another peak. This can be resolved either by manually adjusting
the linewidth and/or position of a troublesome peak and letting the fit continue from there,
or by removing the peak altogether if the problem persists. Once the fit stabilises after
a number of those batches, it is allowed to converge without interruption. An important
factor to consider throughout this procedure, is how to deal with the aforementioned
possibility of negative amplitudes within a standard linear regression scheme. Our GUI
provides two basic approaches, laid out below.

Adapted linear regression. This is the default algorithm for determining the optimal
amplitudes and it consists of three steps.

1) A standard linear regression is performed, resulting in a set of amplitudes {A;}.

2) If any of the amplitudes are negative, say those for i € {¢| A, < 0}, we remove the
basis functions F; from F and perform another standard linear regression including
only the positive-amplitude peaks.

3) Repeat step 2) until no negative amplitudes result.

The output of this procedure is IF including all basis functions Fj,, with their amplitudes
A,z as calculated in the last iteration of step 2) and all basis functions F; with their
amplitudes A, set to 0. This ensures that the resulting fit is not only free of unphysical
negative amplitudes, but also a proper solution of the linear regression equations, getting
rid of any incorrect compensation or cancellation of peaks and pushing the other param-
eters towards a physically accurate fit. Additionally, this approach is much faster than
using the NNLS algorithm and moreover it remains analytical and hence robust.

Standard linear regression. Sometimes it might be useful or informative to retain the
possibility of negative amplitudes in the full fit. For this reason, an option is given in
PLEfit2D to determine the A; using standard linear regression, without any attempt to
remove or exclude negative amplitudes. This option should be used with caution.

2.4 Error calculation

For the purposes of this discussion, we consider F(FEey, Fex) as a long vector of length
NemMex, Where ne, and ne, are the number of data points in emission and excitation,
respectively. We use linear indexing to denote the components of this vector as Fy, i.e.
each k corresponds to a unique pair (Fep, Fex). We further denote the full collection of fit
parameters related to lineshapes with P, containing both the parameters shared among
all basis functions Fj, such as the exponent in the diameter dependence of the RBM
phonon sideband, and all parameters unique to a given peak F; such as its position. This
collection can also be considered as a 1D vector, the elements of which are denoted as IP,.
Each ¢ corresponds to a specific parameter.



2.4.1 Model parameters

The errors on the lineshape parameters P, such as exciton peak width and position, are
determined as follows:

(1) The residual variance o2 is estimated from the residuals r(P) := F(P) — S as

r(P)|?
52(P) = M (S3)
Nrdof
Here S is the experimental signal vectorised in the same way as the fit F, n.qof is
the number of residual degrees of freedom, discussed below, and ||-|| is the standard
Euclidean norm.

(2) The covariance matrix 3(IP) is then estimated as

S(P) = (1) 6*(P), (S4)
where
dF,
Jre = 1B, (S5)

is the Jacobian matrix of F w.r.t. the lineshape parameters, as calculated by the
MATLAB® function 1sqcurvefit.

(3) The 1o error margin on parameter P, is then calculated as f]gg(IP)).

Theoretically n,qof is given by
Nyrdof = Ndof — Mp,

with nger the overall number of degrees of freedom (DOF), given by nemnex, and n, is the
number of fit parameters, given by the length of P. However, the errors obtained in this
way do not take into account systematic deviations of the data from the model for the
fitted values of the model parameters, due to possible model inaccuracies.

It is possible to estimate the influence of systematic errors by examining the zero-crossings
of the residuals. Indeed, without systematic error, the residuals are expected to be nor-
mally distributed around 0, which implies there are

NemMex Ndof
= S6
5 5 (S6)

Ng =

sign changes or zero-crossings in the residuals. By counting the number of these crossings
it is hence possible to estimate an effective number of degrees of freedom ngofes. If there
is a systematic error, this number will be smaller than the theoretical nq.: the residuals
systematically deviate above or below zero. The effective number of DOF is thus estimated
by twice the amount of sign changes in the residual, both in emission (n{™) and excitation
(nf¥). Since there are ne, emission profiles in a 2D PLE map and ney, excitation profiles,
the effective number of degrees of freedom provided by each profile is given by

NG = 220 (S7)
ex
ex neX
Mot offt = 2 ° (S8)
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The effective number of total DOF is then given by

_ em ex
Ndof,eff = Tdof et ldof eff (59)
4nexnem
0 "o
Ndof,eff = ) (SlO)
nexnem

and the effective number of residual degrees of freedom becomes
Nrdof,eff = Ndof,eff — Tp- (Sll)

2.4.2 Amplitudes

The same general approach is taken in calculating the error bars on the amplitudes.
However, the Jacobian is now calculated explicitly as

ki =

A Fy; (S12)
where Fy; = Fj(Eem, Eex) is the value of the i-th basis function at the point (Eem, Fex)
uniquely defined by the linear index k. Again the effective number of residual degrees
of freedom n,qof = Naor — IV is estimated in the same way as for the model parameters.
From this Jacobian the covariance matrix and ultimately the 1o confidence intervals are
then calculated. Note: in this way, correlations between parameters are fully taken into
account in the errors on numerically determined parameters (including correlations with
amplitudes), but for the errors on amplitudes only correlations with other amplitudes are
taken into account.

2.5 Tolerance value estimation

The main criterion for convergence of a fit consists of comparing the relative change in
the sum of the squared residuals between consecutive iterations to a set tolerance value.
If this value is set too high, the fitting will halt before sufficient convergence is reached.
Setting it too low, on the other hand, results in fits taking a very long time, although
sufficient convergence was likely reached sooner. To obtain an accurate fit in a reasonable
amount of time it is, therefore, important to set the tolerance to an appropriate value for
any given PLE data. In order to provide some guidance in this decision, an equation is
included in the GUI which suggests such a value based on a quick analysis of the data
and fit, within 1-2 orders of magnitude. This equation was derived by extensive tests on
simulated data in the following manner.

First, a single set of simulated data is fitted for 200 different instances of noise, with a
very restrictive tolerance value 7 = 107 to ensure proper convergence. The resulting
fitted values for each parameter P; are considered fully converged and used to determine
the standard deviation ;. Subsequently, 30 of these instances are fitted again with a
different convergence criterion: the fit is performed as usual but repeated multiple times,
each time with a tolerance value one order of magnitude smaller than the last, starting
from 7 = 1. When a tolerance value leads to fitted parameter values which are within
0.10; of their fully converged values for all i, the fit is said to have converged and the
current value of 7 is then taken to be the appropriate tolerance for that set of data with
that instance of noise.



The above scheme was repeated for different sequences of simulations. Within each se-
quence, a single aspect of the data was varied across these repetitions: number of chiral
species, noise level, data resolution, data scale, ... The types of variations that have
proved to be significant in these tests are (1) the number of chiral species N in the data
and (2) the noise level L; the results for these are shown in Fig. SI.

—logig 7
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Fig. S1: Results from fits of simulated data: optimal tolerance value order of

magnitude as a function of (left) number of chiral species N and (right) noise

level L. In each figure, the black squares and error bars correspond to the

mean and standard deviation across the 30 refitted instances of a particular
simulation. The blue line shows the best fit, a power law in both cases.

The curves fitted to these results are combined in the GUI to suggest an appropriate order of magnitude
for the tolerance value. This estimation function is given by

—log,y 7 = aN® L. (S13)

The values and standard deviations for «, e; and es are listed in Table S2. The accuracy of this estimator
was tested with 15 more simulated samples and the average error on —log;,7 was found to be £0.57
with a standard deviation of 0.32. In other words, the ideal tolerance value for a given fit will most likely
lie within one order of magnitude from the suggested value.

Fit Parameter Value Standard Deviation

o 5.84 0.82
el 0.23 0.08
€2 0.11 0.02

Table S2: Fit parameters for the tolerance value order of magnitude —log;, 7,
as a function of N and L, in equation (S13).

In unsimulated data the noise level is estimated as follows. The noise itself is estimated by subtracting
from the original data a smoothed version of it, created using a third-degree Savitzky-Golay filter in
a bnm wide moving window, in each direction.® In other words, the data is fitted with a third-order
polynomial in a region of 5nm around each point to obtain the smoothed version. Subsequently, the
average absolute value of the estimated noise is calculated. Assuming a fairly flat noise profile, this
should correspond to half the maximum of the noise. This method is preferrable over simply taking the
maximum of the estimated noise as that method is very sensitive to extreme outliers. The noise level
itself is then estimated by dividing the thus-obtained maximum noise by the maximum of the data.

Due to the smoothing involved, the estimated noise will be less pronounced than the actual noise. Com-
bined with the likelihood that the maximum of the data is higher than the underlying (real) intensity,



this means the estimate of the noise level will also be a lower bound. In fact, our simulations suggest the
estimated level is typically between 80-100 % of the actual level, meaning the estimated tolerance value
will be slightly smaller than the one given by (S13). Since this estimated value serves as a guide and
shouldn’t be taken as an absolute, such a slight underestimation of the noise level is not significant.

3 Additional Figures

Fig. S2 shows the 2D experimental PLE map and fit, together with 1D emission and excitation slices for
a sample of HiPco SWCNTs after ATPE treatment for high (7,5) purity. The same graphs are shown in
the main text for the parent HiPco sample (Fig. 2) and a different child sample ATPE treated for high
(9,8) impurity (Fig. 4). A histogram as created by our GUI for each of these samples is moreover shown
below in Fig. S3, indicating a typical use for this visualisation tool.
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Fig. S2: PLE map and fit for an ATPE separated sample of HiPco SWCNTs
with target chirality (7,5). (top left) Experimental 2D PLE map with chiral
indices indicated. (top right) Fitted PLE map for this sample with fitted peak
positions marked as white dots. (bottom left) Integrated emission spectra
(black) and fits (red) for a few excitation intervals. (bottom right) Integrated
excitation spectra (black) and fits (red) for a few emission intervals.
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(b) Child sample after ATPE treatment for high (7,5) purity.
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(c) Child sample after ATPE treatment for high (9,8) purity.

Fig. S3: Histograms, analogous to Fig. 5 in the main text, generated by our
GUI for the amplitudes extracted from fits of PLE maps for a parent sample
and two of its child samples after different ATPE treatments. Intensities are
given as a percentage of the total intensity.

10



References

[1] S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley and R. B. Weisman, Science,
2002, 298, 2361-2366.

[2] S. Cambré and W. Wenseleers, Angew. Chem. Int. Ed., 2011, 50, 2764-2768.

[3] J. Campo, S. Cambré, B. Botka, J. Obrzut, W. Wenseleers and J. A. Fagan, ACS Nano, 2021, 15,
2301-2317.

[4] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Society for Industrial and Applied
Mathematics, 1974.

[6] A. Savitzky and M. J. E. Golay, Analytical Chemistry, 1964, 36, 1627-1639.

11



