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1. Supplementary text

S1. Chemicals and materials

Thiourea (C₃H₆N₆, 99%), urea (CH4N2O, ≥99.0%), and bismuth (III) acetate (Bi 

(OCOCH3)3, 98%) were purchased from Alfa Assar. Antibiotics, such as Tetracycline 

(C22H24N2O8, ≥98.0%), Sulfamethoxazole (C10H11N3O3S, 99%), Ciprofloxacin (C17H18FN3O3, 

99.5%), Ofloxacin (C18H20FN3O4, 99%), Levofloxacin (C18H20FN3O4, 99%), Rhodamine B 

(C28H31ClN2O3, 98%), and Methylene blue (C16H18ClN3S, 98%) were acquired from Shanghai 

Aladdin Biochemical Technology Co., Ltd. Methanol (CH4O, 98%), tertiary butyl alcohol  

((CH3)3COH, ≥99.7%), ammonium oxalate ((NH4)2C2O4· H2O, ≥99%), 2,2,6,6-tetramethyl 

piperidine-1-oxyl, TEMPO (C9H18NO, 99%), triethanolamime ((HOCH2CH2)3N, 97%), L-

histidine (C6H9N3O2, 98.9%),  5,5-dimethyl-1-pyrroline N-oxide (C6H11NO, ≥99.9%), potassium 

peroxymonosulfate (KHSO5 · 0.5KHSO4 · 0.5K2SO4, 98.5%), and sodium azide (NaN3 99%),  

were purchased from Acros Organics Co., Ltd. Sodium chloride (NaCl, 99.9%), Sodium nitrate 

(NaNO3 99%), sodium carbonate (Na2CO3, 99%),  sodium bicarbonate (NaHCO3, 98%), disodium 

hydrogen phosphate, (Na2HPO4), and humic acid sodium salt (C9H8Na2O4, 98%) were bought 

from Aladdin Reagent Co. Ltd. (Shanghai, China). Deionized water collected by Millipore system 

was used throughout the reaction.

S2. Synthesis of 1D Bi2S3

1D Bi2S3 nanostructure was prepared by making minor modifications in previous reported 

method.1 In a typical synthesis, bismuth nitrate (0.3mM) and thiourea (0.6mM) were dissolved in 

20mL of N, N-dimethylformamide (DMF) in a 50mL glass beaker under stirring for 15 minutes 

and named as solution A. Solution B was prepared by dissolving 50 mg of polyvinylpyrrolidone 



(PVP) in 20 ml of DMF. Next, solution B was added dropwise into solution A under continuous 

stirring at 100°C. The stirring was kept at the same temperature for 6 hours, while the solution 

color turned into dark blue. After cooling to indoor temperature, 1D Bi2S3 sample was separated 

by centrifuge at 700RMP. Separation procedure was repeated for three times with ethanol and 

water and the sample was finally dried at 80C in an oven for overnight.

S3. Some experimental procedures

S3.1. Characterization techniques

Powder X-ray diffraction data of the prepared photocatalysts was collected on a Bruker D8 High 

Resolution X‒ray diffractometer equipped with Cu Kα irradiation source (λ = 0.1538 nm) at an 

operating condition of 30 mA and 40 kV with a scan rate (2θ) of 0.01°/sec from 10° to 80°.  

Scanning electron microscope (SEM) analysis was performed on a Hitachi S-4800 instrument 

operating at a voltage of 5 keV. Transmission electron microscopy (TEM) images were acquired 

on a Hitachi SU8010 transmission electron microscope at operating voltage of 100kV. High angle 

annular dark field scanning transmission electron microscopy (HAADF-STEM) analysis and 

elemental mapping was executed on FEI Tecnai G2 F20 S-TWIN instrument coupled with energy 

dispersive X-ray spectroscopy (EDS) detector system at an operating voltage of 200 kV. For 

surface elemental composition and electronic structure analysis X–ray photoelectron spectroscopic 

(XPS) data was acquired on ESCALAB 250Xi X-ray photoelectron spectrometer equipped with 

monochromatized Al Kα X‒ray source, and binding energies were calibrated with reference to C 

1s at 284.6 eV. The UV‒Vis diffuse reflectance spectroscopic analysis of as prepared 

photocatalysts was performed on Shimadzu UV–2450, spectrometer) in the 200‒800 nm range 

using BaSO4 as the reflectance standard material. The PL emission spectra were recorded on a F–



7000, HITACHI, (Japan) Spectrofluorometer at exciting wavelength of 450 nm provided by a 

Xenon lamp. Fourier transform infrared (FT‒IR) spectra were recorded on IRPrestige‒21, 

Shimadzu, (Japan) in the range of 4000‒400 cm-1 using KBr as the reference. 

S3.2. Photoelectrochemical measurements 

The photocurrent response and electrochemical impedance spectroscopy (EIS) of g-C3N4, Bi2S3 

and Bi2S3(0.2)/g-C3N4, were inspected on a CHI 660E electrochemical workstation (Ch 

Instruments, Shanghai, China) using standard three-electrode model at constant potential of -0.2 

V (vs. SCE), where Pt wire served as the counter electrode, KCl saturated Ag/AgCl electrode as 

the reference electrode, and 0.2M Na2SO4 aqueous solution as the electrolyte. The working 

electrodes for g-C3N4, Bi2S3 and Bi2S3(0.2)/g-C3N4 were prepared as follows: 20mg of the 

photocatalyst was dispersed in 1mL ethanol, then sonicated to make a slurry after adding 20 μL of 

0.5% Nafion solution. Next, 50μL of the prepared slurry was casted onto a 2cm × 2cm FTO glass 

film and dried in vacuum oven at 80◦C.

S3.3. Procedure for studying the degradation of antibiotics 

Typically, catalytic experiments for the degradation experiments of organic pollutants (antibiotics 

and dyes) was carried out in a 50 mL beaker. In details, 30mg of the prepared photocatalyst was 

dispersed into 50mL solution containing 20mg/L pollutants (TC, CIP, LEV, OX, SMX, RhB, MB) 

and the solution pH was then adjusted to 7 using 0.5M H2SO4 or NaOH. Then, the mixture was 

kept under stirring in the dark for 30 min to attain the adsorption–desorption equilibrium. Next, 

after adding 2mM of peroxymonosulfate (PMS) into the suspension, the reaction system was 

immediately exposed to light provided by a 300W Xe lamp with UV cutoff filter of λ=420 nm. At 



regular interval of 10 minutes, 3mL of reaction mixture was sampled and filtered using a 0.45 µm 

syringe filter to separate aqueous solution and the solid catalyst. The temporal concentration of 

pollutants during 60 minutes of irradiation was determined through recording the characteristic 

absorption spectra of TC (357nm), CIP (276nm), LEV (286nm), SMX (262nm), OX (288nm), 

RhB (567nm), and MB (665nm) on a UV600 Shimadzu spectrophotometer. Control experiments 

were conducted without adding PMS, without adding photocatalysts, and under dark conditions. 

Kinetic rate constant (k) values for the prepared photocatalysts were evaluated by applying pseudo-

first order reaction equation:

                                      – ln(Co /Ct) = kt                                                      (S1)

Meanwhile, the % degradation efficiency was calculated by the following equation:

                              % removal efficiency = (Co – Ct /Co) × 100                  (S2)

Where the abbreviations Co, Ct, k, and t in equation S1 and S2 corresponds to initial concentration, 

concentration at time t, first-order kinetic rate constant, and reaction time(minutes), respectively.

To assess the contribution of various radicals and non-radicals species during the degradation, co-

quenching experiments were performed by adding tert-butyl alcohol (TBA, •OH), ethanol (EtOH, 

•OH and SO4
•−), triethanolamine (TEO, h+), L-histidine (L-His, 1O2), and 2,2,6,6-

tetramethylpiperidine-1-oxyl (TEMPOL, O2
•−), and sodium azide (NaN3,•OH, SO4

•−, 1O2, and O2
•− 

). To study the pH effect, the solution pH was adjusted from 1 to 9 with the help of 1M NaOH and 

0.2M H2SO4 solution. Interference of various ions (Cl-, NO3
-, HPO4

2-, CO3
2- and HCO3

-) and 

organic matter was investigated by adding respectively 2mM, 5mM and 10mM of NaCl, NaNO3, 

Na2CO3, NaHCO3, Na2HPO4, and sodium salt of humic acid.



S4. Theoretical computation

The first-principles calculations were performed with spin-polarized density functional theory 

(DFT) by utilizing Vienna ab-initio Simulation Package (VASP).2,3 The generalized gradient 

approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE) format and the projector-augmented 

wave (PAW) method were employed in all calculations. 4-6 A plane wave basis with the cut-off 

energy of 450 eV was applied. Van der Waals force (DFT+D3) was included in the geometry 

relaxation and molecule adsorption simulations (O2, SO4 and HO-SO4).7 The convergence criterion 

was set to less than 10−5 eV and 0.01 eV/Å for the total energy and the residual Hellmann-Feynman 

force acting on each atom, respectively. Gamma-point sampling was adopted in all calculations. 

The g-C3N4 substrate was modeled as a 5×5 supercell in the heterostructure with a vacuum layer 

of 20 Å in the direction perpendicular to g-C3N4 sheet to avoid artificial interaction between the 

neighboring images. The 9x1x1 supercell of 1DBi2S3 molecular chain was chosen in the study to 

keep the lattice mismatch of the heterostructure less than 3%.   

 



2. Supplementary figures

Figure S1: FE-SEM images of a) 1DBi2S3(0.1)/2Dg-C3N4’
 b) 1D Bi2S3(0.2)/2Dg-C3N4 and c) 

1DBi2S3(0.3)/2Dg-C3N4.
 

Figure S2: FE-SEM and TEM images of, a) pristine 2Dg-C3N4 and b) pristine 1DBi2S3.

Figure S3: a) FE- SEM image and b) TEM image of physically prepared 1DBi
2
S

3
/2Dg-C

3
N

4 
heterostructure.  



Figure S4. a) α and β facets of optimized DFT 1D Bi2S3 model, and b) various possible directions: 
 a, b, or diagonal, for placing 1D Bi2S3 chains over 2D g-C3N4 surface. 

Figure S5. XPS survey scan spectra of the prepared 1DBi2S3(n)/2Dg-C3N4 heterostructures.

Figure S6. Energy band structures calculated for a) 2D-gC3N4 and b)1D Bi2S3/2Dg-C3N4.



Figure S7. Tetracycline (TC) degradation catalyzed by 1DBi2S3(n)/2Dg-C3N4 heterostructures 

(where n=0.1,0.2 and 0.3) under visible-light. (Reaction condition: [TC] = 20 mg L−1, [catalyst] = 

30mg and pH = 7.0).

Figure S8.  UV-visible spectra of tetracycline degradation on 1DBi2S3(0.2)/2Dg-C3N4 
heterostructure with added PMS under visible-light. (Reaction condition: [TC] = 20 mg L−1, 
[catalyst] = 0.2 g and pH = 7.0).



Figure S9. XPS analysis of physically mixed 1DBi2S3 and 2Dg-C3N4 composite: a) Survey scan 

of Bi2S3/g-C3N4 heterostructure, b) C 1s spectrum, c) N 1s spectrum and d) Bi 4f spectrum. 

Figure S10.  Degradation of tetracycline on physically mixed 1DBi2S3/2Dg-C3N4 composite under 

visible-light and with added PMS. (Reaction condition: [TC] = 20 mg L−1, [catalyst] = 30mg, 

[PMS] = 2mM and [pH] = 7.0).



Figure S11.  DFT optimized configurations for O2 adsorption on: a) 1DBi2S3, b) 1DBi2S3/2Dg-
C3N4-α (g-C3N4 site), c) 1DBi2S3/2Dg-C3N4-β (g-C3N4 site), d) 1DBi2S3/2Dg-C3N4-α (S site), e) 
1DBi2S3/2Dg-C3N4-α (Bi site) and f) 1DBi2S3/2Dg-C3N4-β (S site).

Figure S12. PMS adsorption on a) 2Dg-C3N4 and b) 1D Bi2S3. 



Figure S13. Post catalysis characterizations of 1DBi2S3(0.2)/2Dg-C3N4: a) powder XRD pattern, 

b) SEM image, c) TEM image and d) HR-TEM image. 
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