In situ interfacial engineering of 1D Bi₂S₃/2D g-C₃N₄ heterostructure for antibiotics degradation in aqueous media *via* light mediated peroxymonosulfate activation *Muhammad Mateen*^{*a,c}, *Guanrong Chen*^{a,b}, *Na Guo*^{a,d*}, *and Wee Shong Chin*^{*a,b} ^aAdvance Manufacturing and Material Center, National University of Singapore (Chongqing) Research Institute, Chongqing, 400000, P. R. China. ^bDepartment of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543, Singapore. ^cSchool of Chemistry and Chemical Engineering, Chongqing University, 400000, P. R. China. ^dDepartment of Physics, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543, Singapore. *Corresponding authors: chmcws@nus.edu.sg_(W. S. Chin)

<u>mateenchem@hotmail.com</u> (M. Mateen) <u>phyguon@u.nus.edu</u> (N. Guo)

1. Supplementary text

S1. Chemicals and materials

Thiourea (C₃H₆N₆, 99%), urea (CH₄N₂O, \geq 99.0%), and bismuth (III) acetate (Bi (OCOCH₃)₃, 98%) were purchased from Alfa Assar. Antibiotics, such as Tetracycline (C₂₂H₂₄N₂O₈, ≥98.0%), Sulfamethoxazole (C₁₀H₁₁N₃O₃S, 99%), Ciprofloxacin (C₁₇H₁₈FN₃O₃, 99.5%), Ofloxacin (C₁₈H₂₀FN₃O₄, 99%), Levofloxacin (C₁₈H₂₀FN₃O₄, 99%), Rhodamine B (C₂₈H₃₁ClN₂O₃, 98%), and Methylene blue (C₁₆H₁₈ClN₃S, 98%) were acquired from Shanghai Aladdin Biochemical Technology Co., Ltd. Methanol (CH₄O, 98%), tertiary butyl alcohol $((CH_3)_3COH, \geq 99.7\%)$, ammonium oxalate $((NH_4)_2C_2O_4 \cdot H_2O, \geq 99\%)$, 2,2,6,6-tetramethyl piperidine-1-oxyl, TEMPO (C9H18NO, 99%), triethanolamime ((HOCH2CH2)3N, 97%), Lhistidine ($C_6H_9N_3O_2$, 98.9%), 5,5-dimethyl-1-pyrroline N-oxide ($C_6H_{11}NO$, \geq 99.9%), potassium peroxymonosulfate (KHSO₅ \cdot 0.5KHSO₄ \cdot 0.5K₂SO₄, 98.5%), and sodium azide (NaN₃ 99%), were purchased from Acros Organics Co., Ltd. Sodium chloride (NaCl, 99.9%), Sodium nitrate (NaNO₃ 99%), sodium carbonate (Na₂CO₃, 99%), sodium bicarbonate (NaHCO₃, 98%), disodium hydrogen phosphate, (Na₂HPO₄), and humic acid sodium salt (C₉H₈Na₂O₄, 98%) were bought from Aladdin Reagent Co. Ltd. (Shanghai, China). Deionized water collected by Millipore system was used throughout the reaction.

S2. Synthesis of 1D Bi₂S₃

1D Bi_2S_3 nanostructure was prepared by making minor modifications in previous reported method.¹ In a typical synthesis, bismuth nitrate (0.3mM) and thiourea (0.6mM) were dissolved in 20mL of N, N-dimethylformamide (DMF) in a 50mL glass beaker under stirring for 15 minutes and named as solution A. Solution B was prepared by dissolving 50 mg of polyvinylpyrrolidone (PVP) in 20 ml of DMF. Next, solution B was added dropwise into solution A under continuous stirring at 100°C. The stirring was kept at the same temperature for 6 hours, while the solution color turned into dark blue. After cooling to indoor temperature, 1D Bi₂S₃ sample was separated by centrifuge at 700RMP. Separation procedure was repeated for three times with ethanol and water and the sample was finally dried at 80°C in an oven for overnight.

S3. Some experimental procedures

S3.1. Characterization techniques

Powder X-ray diffraction data of the prepared photocatalysts was collected on a Bruker D8 High Resolution X-ray diffractometer equipped with Cu K α irradiation source ($\lambda = 0.1538$ nm) at an operating condition of 30 mA and 40 kV with a scan rate (20) of 0.01°/sec from 10° to 80°. Scanning electron microscope (SEM) analysis was performed on a Hitachi S-4800 instrument operating at a voltage of 5 keV. Transmission electron microscopy (TEM) images were acquired on a Hitachi SU8010 transmission electron microscope at operating voltage of 100kV. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) analysis and elemental mapping was executed on FEI Tecnai G2 F20 S-TWIN instrument coupled with energy dispersive X-ray spectroscopy (EDS) detector system at an operating voltage of 200 kV. For surface elemental composition and electronic structure analysis X-ray photoelectron spectroscopic (XPS) data was acquired on ESCALAB 250Xi X-ray photoelectron spectrometer equipped with monochromatized Al Ka X-ray source, and binding energies were calibrated with reference to C 1s at 284.6 eV. The UV-Vis diffuse reflectance spectroscopic analysis of as prepared photocatalysts was performed on Shimadzu UV-2450, spectrometer) in the 200-800 nm range using $BaSO_4$ as the reflectance standard material. The PL emission spectra were recorded on a F–

7000, HITACHI, (Japan) Spectrofluorometer at exciting wavelength of 450 nm provided by a Xenon lamp. Fourier transform infrared (FT–IR) spectra were recorded on IRPrestige–21, Shimadzu, (Japan) in the range of 4000–400 cm⁻¹ using KBr as the reference.

S3.2. Photoelectrochemical measurements

The photocurrent response and electrochemical impedance spectroscopy (EIS) of g-C₃N₄, Bi₂S₃ and Bi₂S₃(0.2)/g-C₃N₄, were inspected on a CHI 660E electrochemical workstation (Ch Instruments, Shanghai, China) using standard three-electrode model at constant potential of -0.2 V (*vs.* SCE), where Pt wire served as the counter electrode, KCl saturated Ag/AgCl electrode as the reference electrode, and 0.2M Na₂SO₄ aqueous solution as the electrolyte. The working electrodes for g-C₃N₄, Bi₂S₃ and Bi₂S₃(0.2)/g-C₃N₄ were prepared as follows: 20mg of the photocatalyst was dispersed in 1mL ethanol, then sonicated to make a slurry after adding 20 µL of 0.5% Nafion solution. Next, 50µL of the prepared slurry was casted onto a 2cm × 2cm FTO glass film and dried in vacuum oven at 80°C.

S3.3. Procedure for studying the degradation of antibiotics

Typically, catalytic experiments for the degradation experiments of organic pollutants (antibiotics and dyes) was carried out in a 50 mL beaker. In details, 30mg of the prepared photocatalyst was dispersed into 50mL solution containing 20mg/L pollutants (TC, CIP, LEV, OX, SMX, RhB, MB) and the solution pH was then adjusted to 7 using 0.5M H₂SO₄ or NaOH. Then, the mixture was kept under stirring in the dark for 30 min to attain the adsorption–desorption equilibrium. Next, after adding 2mM of peroxymonosulfate (PMS) into the suspension, the reaction system was immediately exposed to light provided by a 300W Xe lamp with UV cutoff filter of λ =420 nm. At regular interval of 10 minutes, 3mL of reaction mixture was sampled and filtered using a 0.45 μ m syringe filter to separate aqueous solution and the solid catalyst. The temporal concentration of pollutants during 60 minutes of irradiation was determined through recording the characteristic absorption spectra of TC (357nm), CIP (276nm), LEV (286nm), SMX (262nm), OX (288nm), RhB (567nm), and MB (665nm) on a UV600 Shimadzu spectrophotometer. Control experiments were conducted without adding PMS, without adding photocatalysts, and under dark conditions. Kinetic rate constant (*k*) values for the prepared photocatalysts were evaluated by applying pseudo-first order reaction equation:

$$-\ln(C_o/C_t) = kt \tag{S1}$$

Meanwhile, the % degradation efficiency was calculated by the following equation:

% removal efficiency =
$$(C_o - C_t / C_o) \times 100$$
 (S2)

Where the abbreviations C_{a} , C_{t} , k, and t in equation S1 and S2 corresponds to initial concentration, concentration at time t, first-order kinetic rate constant, and reaction time(minutes), respectively. To assess the contribution of various radicals and non-radicals species during the degradation, coquenching experiments were performed by adding tert-butyl alcohol (TBA, 'OH), ethanol (EtOH, 'OH and SO₄⁻⁻), triethanolamine (TEO, h⁺), L-histidine (L-His, ¹O₂), and 2,2,6,6tetramethylpiperidine-1-oxyl (TEMPOL, O₂⁻⁻), and sodium azide (NaN₃, 'OH, SO₄⁻⁻, ¹O₂, and O₂⁻⁻). To study the pH effect, the solution pH was adjusted from 1 to 9 with the help of 1M NaOH and 0.2M H₂SO₄ solution. Interference of various ions (Cl⁻, NO₃⁻, HPO₄²⁻, CO₃²⁻ and HCO₃⁻) and organic matter was investigated by adding respectively 2mM, 5mM and 10mM of NaCl, NaNO₃, Na₂CO₃, NaHCO₃, Na₂HPO₄, and sodium salt of humic acid.

S4. Theoretical computation

The first-principles calculations were performed with spin-polarized density functional theory (DFT) by utilizing Vienna ab-initio Simulation Package (VASP).^{2,3} The generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE) format and the projector-augmented wave (PAW) method were employed in all calculations. ⁴⁻⁶ A plane wave basis with the cut-off energy of 450 eV was applied. Van der Waals force (DFT+D3) was included in the geometry relaxation and molecule adsorption simulations (O₂, SO₄ and HO-SO₄).⁷ The convergence criterion was set to less than 10^{-5} eV and 0.01 eV/Å for the total energy and the residual Hellmann-Feynman force acting on each atom, respectively. Gamma-point sampling was adopted in all calculations. The g-C₃N₄ substrate was modeled as a 5×5 supercell in the heterostructure with a vacuum layer of 20 Å in the direction perpendicular to g-C₃N₄ sheet to avoid artificial interaction between the neighboring images. The 9x1x1 supercell of 1DBi₂S₃ molecular chain was chosen in the study to keep the lattice mismatch of the heterostructure less than 3%.

2. Supplementary figures

Figure S1: FE-SEM images of a) $1DBi_2S_3(0.1)/2Dg-C_3N_4$, b) $1DBi_2S_3(0.2)/2Dg-C_3N_4$ and c) $1DBi_2S_3(0.3)/2Dg-C_3N_4$.

Figure S2: FE-SEM and TEM images of, a) pristine 2Dg-C₃N₄ and b) pristine 1DBi₂S₃.

Figure S3: a) FE- SEM image and b) TEM image of physically prepared $1DBi_2S_3/2Dg-C_3N_4$ heterostructure.

Figure S4. a) α and β facets of optimized DFT 1D Bi₂S₃ model, and b) various possible directions: a, b, or diagonal, for placing 1D Bi₂S₃ chains over 2D g-C₃N₄ surface.

Figure S5. XPS survey scan spectra of the prepared $1DBi_2S_3(n)/2Dg-C_3N_4$ heterostructures.

Figure S6. Energy band structures calculated for a) 2D-gC₃N₄ and b)1D Bi₂S₃/2Dg-C₃N₄.

Figure S7. Tetracycline (TC) degradation catalyzed by $1DBi_2S_3(n)/2Dg-C_3N_4$ heterostructures (where n=0.1,0.2 and 0.3) under visible-light. (Reaction condition: [TC] = 20 mg L⁻¹, [catalyst] = 30mg and pH = 7.0).

Figure S8. UV-visible spectra of tetracycline degradation on $1DBi_2S_3(0.2)/2Dg-C_3N_4$ heterostructure with added PMS under visible-light. (Reaction condition: $[TC] = 20 \text{ mg } L^{-1}$, [catalyst] = 0.2 g and pH = 7.0).

Figure S9. XPS analysis of physically mixed $1DBi_2S_3$ and $2Dg-C_3N_4$ composite: a) Survey scan of $Bi_2S_3/g-C_3N_4$ heterostructure, b) C 1s spectrum, c) N 1s spectrum and d) Bi 4f spectrum.

Figure S10. Degradation of tetracycline on physically mixed $1DBi_2S_3/2Dg-C_3N_4$ composite under visible-light and with added PMS. (Reaction condition: $[TC] = 20 \text{ mg } L^{-1}$, [catalyst] = 30 mg, [PMS] = 2mM and [pH] = 7.0).

Figure S11. DFT optimized configurations for O₂ adsorption on: a) $1DBi_2S_3$, b) $1DBi_2S_3/2Dg-C_3N_4-\alpha$ (g-C₃N₄- α (g-C₃N₄ site), c) $1DBi_2S_3/2Dg-C_3N_4-\beta$ (g-C₃N₄ site), d) $1DBi_2S_3/2Dg-C_3N_4-\alpha$ (S site), e) $1DBi_2S_3/2Dg-C_3N_4-\alpha$ (Bi site) and f) $1DBi_2S_3/2Dg-C_3N_4-\beta$ (S site).

Figure S12. PMS adsorption on a) 2Dg-C₃N₄ and b) 1D Bi₂S₃.

Figure S13. Post catalysis characterizations of 1DBi₂S₃(0.2)/2Dg-C₃N₄: a) powder XRD pattern, b) SEM image, c) TEM image and d) HR-TEM image.

References

- S1. J. Arumugam, Amal George, A. Dhayal Raj, A. Albert Irudayaraj, R.L. Josephine, S. John Sundaram, Amal M. Al-Mohaimeed, Wedad A. Al-onazi, Mohamed Soliman Elshikh, K. Kaviyarasu. Construction and Characterization of Photodiodes prepared with Bi₂S₃ Nanowires. J. Alloys Compd. 2011, 863, 158681.
- S2. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a planewave basis set. Phys. Rev. B. **1996**, 54(16),11169.
- S3. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993, 47(1),558.
- S4. Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys., 2000, 113(22): 9901–9904.
- S5. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. **1996**, 77(18), 3865.
- S6. Blöchl PE. Projector augmented-wave method. Phys. Rev. B. 1994, 50(24), 17953.
- S7. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.
- S8. Min Wang, Chongyue Jin, Zhilin Li, Meiyan You, Yu Zhang, Tong Zhu. The effects of bismuth (III) doping and ultrathin nanosheets construction on the photocatalytic performance of graphitic carbon nitride for antibiotic degradation. J. Colloid Interface Sci. 2019, 533, 513–525

- S9. Dongdong Chen, Jianzhang Fang, Shaoyou Lu, GuangYing Zhou, Weihua Feng, Fan Yang, Yi Chen, ZhanQiang Fang Fabrication of Bi modified Bi₂S₃ pillared g-C₃N₄ photocatalyst and its efficient photocatalytic reduction and oxidation performances. *Appl. Surf. Sci*, **2017**, 426, 427-436'
- S10. Poulomi Sarkar, Sudarsan Neogi, Sirshendu De. Activation of peroxymonosulfate by S-scheme Bi₂S₃/doped g-C₃N₄ heterostructure photocatalyst for highly efficient visible light driven tetracycline degradation: Insights into reaction mechanisms. *Sep. Purif. Technol.* **2023**, 308, 122908.
- S11. Qiong Wu, Dingze Lu, Kiran Kumar Kondamareddy, Wingkei Ho, Dezhong Cao, Yimei Zeng, Boyu Zhang, Yuhao Zhang, Lihao Xie, Bang Zhao, Zhennan Wang, Hongjuan Hao, Huiqing Fan, Hongmei Wang. Arab. J. Chem. 2022, 2022, 103689.
- S12. Hui Liu, Wangchen Huo, Tian C. Zhang, Like Ouyang. Shaojun Yuan aPhotocatalytic removal of tetracycline by a Z-scheme heterojunction of bismuth oxyiodide/exfoliated g-C₃N₄: performance, mechanism, and degradation pathway. *Mater. Today Chem. 2023*, 22, 100729.
- S13. Chenyu Wu, Huiru Zuo, Haoyu Du, Siyu Zhang, Lingrui Wang, Qishe Yan Construction of layered embedding dual Z-Scheme Bi₂O₂CO₃/g-C₃N₄/Bi₂O₃: Tetracycline degradation pathway, toxicity analysis and mechanism insight. *Sep. Purif. Technol.*, 2022, 282, 120096.
- S14. Chao Yin, Yali Liu, Xinya Lv, Shuyi Lv, Han cheng, Xiaorong Kang, Xin Li Carbon dots as heterojunction transportmediators effectively enhance BiOI/g-C₃N₄ synergistic persulfate degradation of antibiotics. *Appl. Surf. Sci.* **2022**, 601, 154249.
- S15. Longbo Jiang, Xingzhong Yuan, Guangming Zen, Jie Liang, Xiaohong Chen, Hanbo Yu, Hou Wang, Zhibin Wu, Jin Zhang, Ting Xiong. In-situ synthesis of direct solid-state dual Z-scheme WO₃/g-C₃N₄/Bi₂O₃ photocatalyst for the degradation of refractory pollutant. *Appl. Catal. B Environ.* 2018, 227, 376-385.
- S16. Wei Liu, Zhaohua Li, Qun Kang, Lilian Wen. Efficient photocatalytic degradation of doxycycline by coupling α-Bi₂O₃/g-C₃N₄ composite and H₂O₂ under visible light. *Environ. Res.* **2021**,197, 110925.
- S17.Zhun Shi, Yan Zhang, Xiaofeng Shen, Gumila Duoerkun, Bo Zhu, Lisha Zhang, Maoquan L, Zhigang Chen, Fabrication of g-C₃N₄/BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light. *Chem. Eng. J.* **2020**, 386, 124010.
- S18. Dongling Jia, Yifan Zhang, Xue Zhang, Peiying Feng, Lin Yang, Ruonan Ning, Hongzhi Pan and Yuqing Miao. Facile fabrication of Bi nanoparticle-decorated g-C₃N₄ photocatalysts for effective tetracycline hydrochloride degradation: environmental factors, degradation mechanism, pathways and biotoxicity evaluation. *Environ. Sci.: Nano.* **2021**,8, 415-431.
- S19. Dongdong Chen, Shuxing Wu, Jianzhang Fang, Shaoyou Lu, GuangYing Zhou, Weihua Feng, Fan Yang, Yi Chen, ZhanQiang Fang. A nanosheet-like α-Bi₂O₃/g-C₃N₄ heterostructure modified by plasmonic metallic Bi and oxygen vacancies with high photodegradation activity of organic pollutants. *Sep. Purif. Technol.* 2018, 193, 232–241.
- S20. Huinan Che, Chunbo Liu, Wei Hu,a Hao Hu, Jinqiao Li, Jianying Dou, Weidong Shi, Chunmei Li, Hongjun Dong. NGQD active sites as effective collectors of charge carriers for improving the photocatalytic performance of Z-scheme g-C₃N₄/Bi₂WO₆ heterojunctions. *Catal. Sci.Technol.* 2018, 8, 622–631.
- S21. Lijia Huang, Hui Liu, Yuan Wang, Tian C. Zhang, Shaojun Yuan. Construction of ternary Bi₂O₃/biochar/g-C₃N₄ heterojunction to accelerate photoinduced carrier separation for enhanced tetracycline photodegradation. *Appl. Surf. Sci.* **2023**, 616, 156509.
- S22. Gaurav Sharma, Amit Kumar, Shweta Sharma, Mu. Naushad, Dai-Viet N. Vo, Mohd Ubaidullah, Sabry M. Shaheen, Florian J. Stadler. Visible-light driven dual heterojunction formed between g-C₃N₄/BiOCl@MXene-Ti₃C₂ for the effective degradation of tetracycline. *Environ. Pollut.* 2022,308, 119597.
- S23. Yizhu Wang, Zipeng Xing, Yi Yang, Weifeng Kong, Chunxu Wu, Hui Peng, Zhenzi Li, Ying Xie, Wei Zhou. Oxygen-defective Bi₂MoO₆/g-C₃N₄ hollow tubulars Sscheme heterojunctions toward optimized photocatalytic performance. *J. Colloid Interface Sci.* **2024**, 653, 1566-1576.

- S24. Dongdong Chen, Lina Li, Lixuan Zhuang, Yujun Liu, Bo Zhang, Zhenzhen Jia. Highly efficient CoFe LDO/α-Bi₂O₃/g-C₃N₄ heterojunction forphotocatalytic elimination of antibiotic pollutants. *Appl. Catal. O: Open.* **2024**, 194, 206992.
- S25. Ganghua Zhou, Lirong Meng, Xin Ning, Weiqin Yin, Jianhua Hou, Qiao Xu, Jianjian Yi, Shengsen Wang, Xiaozhi Wang. Switching charge transfer of g-C₃N₄/BiVO₄ heterojunction from type II to Z-scheme via interfacial vacancy engineering for improved photocatalysis. *Int. J. Hydrogen Energ.* 2022, 47, 8749-8760.
- S26. Feng Guo, Weilong Shi, Huibo Wang, Hui Huang, Yang Li, Zhenhui Kang. Fabrication of a CuBi₂O₄/g-C₃N₄ p-n heterojunction with enhanced visible light photocatalytic efficiency toward tetracycline degradation. *Inorg. Chem. Front.* **2017**, 4, 1714-1720.
- S27. Min Liu, Hailan Qin, Haiming Xu, Zhongwei Zou, Chengming Deng, Dongsheng Xia, Qilin Yu, Yi Zheng, Dahong Chen. Confine activation peroxymonosulfate by surface oxygen vacancies of BiO_{1-x}Cl to boost its utilization rate. *Sep. Purif. Technol.***2023**, 307, 122711.
- S28. Jin Kang, Yiwu Tang, Min Wang, Chongyue Jin, Jiayun Liu, Siyan Li, Zhilin Li, Jiangwei Zhu. The enhanced peroxymonosulfate-assisted photocatalytic degradation of tetracycline under visible light by g-C₃N₄/Na-BiVO₄ heterojunction catalyst and its mechanism. *J. Environ. Chem. Eng.* **2021**, 9, 105524.
- S29. Ruyao Chen, Xincheng Dou, Jiazeng Xia, Yigang Chen, Haifeng Shi. Boosting peroxymonosulfate activation over Bi₂MoO₆/CuWO₄ to rapidly degrade tetracycline: Intermediates and mechanism. *Sep. Purif. Technol.* 2022, 296, 121345.
- S30. Gubran Alnaggar, Abdo Hezam, Q.A. Drmosh, Sannaiah Ananda. Sunlight-driven activation of peroxymonosulfate by microwave synthesized ternary MoO₃/Bi₂O₃/g-C₃N₄ heterostructures for boosting tetracycline hydrochloride degradation. *Chemosphere*, **2021**, 272, 129807.
- S31. Zhenzong Zhang, Ziwei Pan, Yongfu Guo, Po Keung Wong, Xiaoji Zhou, Renbi Bai. In-situ growth of all-solid Z-scheme heterojunction photocatalyst of Bi₇O₉I₃/g-C₃N₄ and high efficient degradation of antibiotic under visible light. *Appl. Catal. B Environ.* **2020**, 261, 118212.