Supporting Information

From Microchannels to High Shear Reactors: Process

Intensification Strategies for Controlled Nanomaterial Synthesis

Zixuan Feng,^a Junheng Guo, *^a Yingcheng Wang,^a Jiaoyan Shi,^a Huiwen Shi,^a Haojie

Li,^{*a*} Jinli Zhang,^{*a*, *b*} and Jiangjiexing Wu^{*c}

^a School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.

^b School of Chemical Engineering and Technology, Tianjin University, Tianjin,
 300072, China.

^c School of Marine Science and Technology, Tianjin University, Tianjin 300072, P.R. China.

*Corresponding Author

E-mail address: gjhtju@163.com (JH Guo), wujiangjiexing2007@126.com (JJX Wu)

Abbreviation	Full name
PI	Process intensification
NM	Nanomaterial
NP	Nanoparticle
MCR	Microchannel reactor
STR	Stirred tank reactor
CIJR	Confined imping jet reactor
RPBR	Rotating packed bed reactor
HSM	High shear mixer
HSR	High shear reactor
SDR	Spinning disk reactor
UR	Ultrasonic reactor
MWR	Microwave reactor
FNP	Flash Nano-Precipitation

Table S1 Nomenclature

	advantages	Micromixing time	Local turbulent kinetic	NP size management	
	auvantages	Micromixing time	energy dissipation rate		
MCR	Microscale effect, reducing	2 ms ^{S1}	$1 \times 10^5 (W/kg)^{S2}$	66 nm ^{S3}	
	particle size distribution,				
	enhancing inter batch				
	repeatability				
CIJR	Ultrafast mixing, high	0.2 ms ^{S4}	$1 \times 10^{5} (W/kg)^{S5}$	142 nm ^{S6}	
	turbulence energy dissipation				
	rate				
RPBR	Hypergravity field and high	0.053 ms ^{S7}	$1.5 \times 10^3 (W/kg)^{S8}$	60 nm ^{S9}	
	centrifugal force fields				
HSR	High shear rate and turbulence	0.101 ms ^{S10}	8×10 ⁵ (W/kg) ^{S11}	7.09 nm ^{\$12}	
	energy dissipation rate				
SDR	Centrifugal thin film,	0.38 ms ^{S13}	$1 \times 10^{3} (W/kg)^{S14}$	47 nm ^{S15}	
	Promoting lateral mixing and				
	reducing radial dispersion				

 Table S2 Comparison of Different PI Technologies

UR	Cavitation effect	Compared with the reactor $1 \times 10^9 (W/kg)^{S16}$	21 nm ^{S17}
		without ultrasonic assistance, it	
		is reduced by 1-2 orders of	
		magnitude.	
MWR	Instantaneous and selective	Compared with the reactor $4 \times 10^5 (W/kg)^{S18}$	2.6 nm ^{\$19}
	heating	without microwave assistance,	
		it is reduced by 1-2 orders of	
		magnitude.	

	equipment service	specific power	Draduction	Soolo un roadinoss	Materials unsuitable	acfotz
	life	consumption	Production	Scale-up readiness	for preparation	salety
MCR	Prone to fouling and clogging	10.46 W/kg ^{S20}	limited processing throughput	The number-up mode requires a large amount of manufacturing costs.	High-solid-content and high-viscosity materials	
CIJR	Prone to fouling and clogging	160 W/kg ^{S21}	limited processing throughput	With amplification effect	High-solid-content and high-viscosity materials	_
RPBR	Prone to fouling and clogging	0.04 W/kg ^{S22}	limited processing throughput	_	High-solid-content and high-viscosity materials	_
HSR	_	4.61 W/kg ^{S23}	_	Prone to backmixing	Shear-sensitive materials	—
SDR	—	473 W/kg ^{S23}	limited processing throughput	—	—	—

 Table S3 Limitations of PI Technologies

UR	 250 W/kg ^{S24}		With amplification effect	Heat-sensitive materials	local overheating caused by high- intensity cavitation effect
MWR	 80 W/kg ^{S25}	_	With amplification effect	Heat-sensitive materials	local overheating caused by high- intensity microwave radiation

Applications	Reactors	Nanomaterials	Advantages of reactors	Functions of PI-fabricated NMs	Ref	
Biomedicine	CJI-CMR	CMC/Zn(II)/PAC	Fast and continuously producing a novel	Antibacterial and bacteriostatic	141	
		nanoparticles	GHS in an energy-saving and safe way			
	CIJR	Poly(N-vinylcaprolactam)	Reducing gel size and improving stability	Stimuli-responsive	142	
		colloidal gels				
	RPBR	Oil dispersions of	Improving product quality and	Used as overbased nanodetergents	143	
		monodispersed CaCO ₃	production efficiency			
		nanoparticles				
	RPBR	Irbesartan nanoparticles	Reducing particle size, improving	Improving solubility/bioavailability		
			stability			
	SDR	Nimesulide nanoparticles	Reducing particle size, narrowing size	Improving solubility/bioavailability	145	
			distribution			
	UR	Zein-NaCas nanoparticles	Reducing the particle size, narrowing size	Improving drug stability/solubility,	146	
			distribution, improving encapsulation	providing a controlled release system		
			efficiency			

Table S4 Advanced applications of NMs manufactured by PI Technologies

	USMR	PLGA-PEG, PLA/DDAB,	Reducing particle size, narrowing size	Bioimaging 147
		mRNA-LNP nanoparticles	distribution, improving	
			production/encapsulation efficiency	
	HCR	O/W nanoemulsion	Reducing particle size, narrowing size	Increasing the release of nicotinamide 148
			distribution, improving stability	
Adsorption	CJI-CMR	MSNs nanoparticles	Reducing particle size, increasing	Improving adsorption capacity/cycling 149
			specific surface area and pore volume	stability of CO ₂
	ICRPB	Zr-MOFs nanoparticles	Reducing reaction time and particle size,	Improving adsorption rate/capacity of 150
			narrowing size distribution	water vapor
	IS-RPB	CMC-nZVI nanoparticles	Reducing particle size, narrowing size	Improving adsorption capacity/removal 151
			distribution, improving dispersibility	efficiency of Pb ²⁺
	RPBR	D201-HFO-R	Reducing particle size, narrowing size	Improving adsorption 152
		nanocomposites	distribution, improving	capacity/selectivity/cycling stability of
			dispersibility/production efficiency	Cr ⁶⁺
	MWR	CeO ₂ /MWCNTs	Reducing particle size, improving	Improving adsorption capacity/removal 153
		nanocomposites	dispersibility	efficiency of MB

	HSR	HSMSMs, HSMSMs-AO	Improving specific surface area/pore	Improving adsorption rate / capacity / 154
		nano-meshes	volume /chemical stability/mechanical	selectivity of U ⁶⁺
			strength/service life	
	MW-MCR	Cu-BDC@rGO	Improving product quality/production	Improving adsorption capacity of H ₂ 155
		nanocomposites	efficiency	
	MWR	Th-MOF nanostructures	Improving specific surface area/pore	Improving adsorption capacity/selectivity 156
			volume /stability/dispersibility	of CO and CH ₄
	HSR	CaCO ₃ (calcite)	Reducing the risk of blockage, improving	Used as building material 157
			removal efficiency of HCl and CO ₂	
Catalysis	RPBR	Cu-MnO _X /γ-Al ₂ O ₃	Improving the proportion of surface	Improving efficiency of ozonation/TOC 158
		nanocomposites	oxygen vacancies/oxide	removal
			dispersibility/active species	
	UR	MnO ₂ /SnO ₂ nanomaterials	Reducing particle size, improving	Improving decomposition efficiency of 159
			specific surface area	H_2O_2
	HSR	CsCuHPAV nanoparticles	Reducing particle size, increasing	Improving MAL conversion rate/MAA 160
			specific surface area/acidic sites/active	selectivity/ catalytic stability
			sites	

	HSR	MnAl-MMO nanosheets	Reducing reaction temperature,	Improving NO conversion rate/N ₂ 161			
			improving specific surface area/pore	selectivity/catalytic stability			
			volume/ pore size/acidic sites/active sites				
	UR	NiMo nanoparticles	Stabling metal ratio and reducing particle	Improving hydrogenation efficiency 163			
			size	/product quality/stability			
	MWR	N-CQDs	Easy, economically affordable, and time-	Improving photocatalytic degradation 164			
			saving	efficiency of RB			
	SDR	TiO ₂ , Cu- TiO ₂ nanoparticles	Reducing particle size, narrowing size	Improving CO ₂ reduction efficiency and 166			
			distribution/band gap energy	formate production rate			
	SDR	AgNP-Z nanocomposites	Reducing particle size, improving	Improving photocatalytic degradation 167			
			dispersibility	efficiency of MB			
	MIVM	$BiOCl_XBr_{1-X}$	Controllable synthesis, improving	Improving photocatalytic degradation 165			
			specific surface area, narrowing size	efficiency of TC			
			distribution/band gap energy				
Coatings	UR-HSR	PU nanocomposites	shortening of the mixing time, improving	Improving adhesion strength and corrosion 168			
			dispersibility	resistance			

UR	TiO ₂ : Fe ₃ O ₄ : Ag NMs	Reducing particle size, boosting the	Improving antibacterial and self-cleaning 169
		electron-hole pair separation, prolonging	properties of fabrics, achieving
		their recombination rate, improving	controllable hydrophilicity/hydrophobicity
		dispersibility	
UR	Protein-based nanoparticles	Improving encapsulation	Improve antioxidant 170
	containing vitamin E	efficiency/dispersibility	activity/stability/durability of fabrics
UR	Ag, Au nanoparticles, fabric	Quick and environment-friendly,	Improve catalytic/antibacterial properties 171
	nanocomposites	promoting the cleavage of glycosidic	of fabrics
		bonds and the formation of mechanical	
		free radicals	
MWR	Ag nanoparticles	Reducing particle size, improving	Improving water absorption / antibacterial 172
		dispersibility	/UV-shielding properties of fabrics
HSR	ZnO nanoparticles	Reducing particle size, narrowing size	Improving the smoothness / antibacterial 173
		distribution, improving dispersibility	/anti-corrosion properties of the film
UR	AgI/TiO ₂ nanocomposites	Efficient and facile, reducing particle	Improving the degradation efficiency 174
		size, enhancing visible light absorption	/antibacterial activity of methyl orange
		intensity	

	UR	ZnO-PMMA hybrid	Improving dispersibility	Inhibiting corrosion of MS 175		
		nanoparticles				
	MCR	LNS	Reducing particle size, improving	Improving UV-shielding efficacy of 176		
			stability/ dispersibility	composite films		
	RPBR	MHT nanoparticles	Reducing particle size, improving	Improving the flame retardancy and 177		
			production efficiency	thermal stability of composite materials		
Optics	HCMR	SnO ₂ nanoparticles	Reducing particle size, improving	Reducing PL intensity, red shift in 178		
			crystallinity	absorption edge and band gap energy		
	RPBR	MgAl-LDH nanoparticles	Reducing reaction time/particle size,	Improving visual transparency 179		
			narrowing size distribution, improving			
			dispersibility			
	HSR	ZnO nanoparticles	Reducing particle size, improving	Improving photocatalytic degradation 180		
			specific surface area/dispersibility	efficiency of MB		
	HSR	$Sn_xZn_{1-x}O_{1+x}$ nanoparticles	Accelerating internal energy/nucleation	Improving photocatalytic degradation 181		
			rate Reducing particle size, Improving	efficiency of MB		
			dispersibility			

	UR	YbVO ₄	nanostructure,	Reducing	particle	size,	improving	Improving	photocatalytic	degradation	182
		YbVO ₄ /CuWO	D ₄	stability				efficiency/ c	ycling stability o	f MB	
		nanocomposit	es								
	CJIR	4CzIPN-DAE	nanoparticles	Reducing r	eaction tim	e/partic	le size	Improving e	efficiency of FRI	ET/switchable	183
								fluorescence	e response		
	MWR	Ag:PbS nanop	oarticles	Reducing	particle	size,	improving	Reducing	PL intensity,	improving	185
			stability/dispersibility properties				of				
						electrical/dielectric/optoelectrical					
	MWR	Ti ₃ C ₂ -MQDs		Reducing r	eaction tim	e		Improving	FRET efficien	cy/switchable	186
								fluorescence response/photodetector			
								performance	2		
	MWR	CuNWs/ZnS		In situ s	synthesis,	improv	ing metal	Improving	photocatalytic	degradation	187
		nanocomposit	es	dissolution	/Cu ⁺ diffus	ion narr	owing band	efficiency/ cycling stability of H_2			
				gap energy				evolution,	Improving H	2 evolution	
								rate/apparen	t quantum efficie	ncy	
Electrochemistry	C-CFMCR	KMnF ₃ nanop	articles	Reducing	particle	size,	Improving	Used as a	a supercapacitor	, improving	191
				dispersibili	ty			discharge sp	pecific capacitance	e, Improving	

density of current/energy/power/cycling stability

MISR	Ni-Co-O nanocomposites	Reducing particle size, Improving	Used as a supercapacitor, improving 192
		specific surface area/pore	specific capacitance/energy density/ power
		volume/dispersibility	density/cycling stability
CJI-CMR	NiAl-LDH nanoparticles	Developing a rapid and continuous flow	Used as a supercapacitor, improving 193
		methodology for one-pot, in situ	specific capacitance/ energy density/ power
		formation, adjusting layer spacing	density/cycling stability
HSR	$LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$	Reducing particle size, narrowing size	Used as cathode material for Li^+ battery, 66
	nanoparticles	distribution, improving dispersibility	improving discharge capacity/cycling
			stability
HSR	$LiNi_{0.60}Mn_{0.40}O_2$,	Improving Li ⁺ layer spacing, reducing Li ⁺	Used as cathode material for lithium-ion 194
	$LiNi_{0.60}Mn_{0.40-x}Fe_xO_2$	migration energy barrier	battery, reducing electrical impedance,
	nanoparticles		Improving discharge capacity
HSR	$LiNi_{0.6}Co_{0.198}Mn_{0.2}La_{0.002}O_2$	Reducing reaction time, improving	Used as cathode material for Li ⁺ battery, 195
	nanoparticles	dispersibility/ Li ⁺ layer spacing, reducing	improving discharge capacity/cycling
		Li ⁺ migration energy barrier	stability

SDR	Prussian blue nanoparticles	Low-cost and efficient, reducing defects,	Used as cathode material for Na ⁺ battery, 196
		increasing Na ⁺ content	improving discharge capacity/cycling
			stability
SDR	Sulfur nanoparticles, $S-TiO_2$	Reducing particle size, narrowing size	Used as cathode material for Li ⁺ battery, 197
	Core-Shell Powder	distribution, Improving production	improving discharge capacity/cycling
		efficiency	stability
UR	SbSI nanowires, SbSI-PAN	Realizing at mild conditions in a simple	Used as a photovoltaic device, improving 198
	nanocomposites	and fast way	open circuit voltage and short circuit
			photocurrent density

Applications	Materials and parameters	Comp	parison
Biomedicine	GHS with CMC/Zn(II)/PAC nanoparticles	STR	CJI-CMR
_	Alcohol content	63.8 vol%	68.4 vol%
-	Oil dispersions of monodispersed CaCO ₃ nanoparticles	STR	RPBR
	Particle size	9.4 nm	5.9 nm
	Total base number	397 mg KOH/g	405 mg KOH/g
	Carbonation reaction time	120 min	53 min
	Storage stability	12 months	18 months
	Residue	>6%	2.5%
-	Irbesartan nanoparticles	STR	RPBR
	Particle size	5–20 µm	295 nm
	Specific surface area	3.51 m ² /g	23.87 m ² /g
	Saturation solubility	3.6 µg/mL	13.7 μg/mL
	Dissolution rate (30 min)	12%	100%
-	Nimesulide nanoparticles	STR	SDR
	Particle size	13.10 μm	192 nm

Table S5 Comparison between Traditional Methods and PI Technologies

	raw drug	SDR
Dissolution time (100% release)	180 min	80 min
Zein- sodium caseinate (Zein-NaCas) nanoparticles	Without UR	UR
Particle size	327.23 μm	228.21 nm
Encapsulation efficiency	$76.84 \pm 0.16\%$	$90.19\pm0.33\%$
DPPH scavenging ability	$58.58\pm2.69\%$	$79.01\pm4.26\%$
Cur retention rate at 75°C (thermal stability)	$58\pm0.52\%$	$85.26 \pm 0.61\%$
Cumulative release rate (after 90 min of digestion in simulated		
gastric fluid)	$19.72 \pm 2.19\%$	$10.03 \pm 1.40\%$
Cumulative release rate (after 240 min of digestion in simulated	70.4(+ 2.120/	40.26 + 1.400/
intestinal fluid)	$70.46 \pm 2.12\%$	$48.26 \pm 1.48\%$
PLGA-PEG nanoparticles	microfluidics method	USMR
Particle size	137 nm	85 nm
	ultrasound-based method	USMR
PDI	0.21	0.09
Oil-in-water (O/W) nanoemulsion	STR	HCR
Cumulative release of nicotinamide (12 h)	3545.4 μg/cm ²	4335.8 μg/cm ²

	Droplet size	1879 nm	366.4 nm
		3D-printed	HCR
	The cost of the rotor	600 USD	2 USD
Adsorption	MON- non-no dista	Without CJI-CMR	CH CMD (MCN- and a file)
	MISINS nanoparticles	(SBA-15) ^{S26}	CJI-CMIR (MISINS nanoparticles)
	Specific surface area	507 m²/g	1854 m ² /g
	Pore size	8.5 nm	3.3 nm
	L SO	Without CJI-CMR	CJI-CMR (US1854-Li ₄ SiO ₄ -Li/Si
	$L_{14}S_{1}O_{4}$	(diatomite-Li ₄ SiO ₄) ^{S27}	= 4.5)
	Adsorption capacity (CO ₂ , 700°C)	16%	34.1%
	Zr-MOFs nanoparticles	STR	ICRPB
	Reaction time (90°C)	43 min	23 min
	Particle size (90°C)	$172\pm40 \ nm$	$134 \pm 16 \text{ nm}$
	Size distribution (90°C)	40 nm	16 nm
	UiO-66	without ICRPB	with ICRPB
	Specific surface area ^{S28}	1335 m ² /g	1416 m ² /g
	Adsorption capacity (water vapor) ^{S28}	576 mg/g	625 mg/g

	Without IS-RPB (CS@nZVI-	With IS-RPB (CMC-nZVI
CMC-nZVI nanoparticles	CMC nanocomposite)	nanoparticles)
Removal (Pb(II)) ^{S29}	52.73%	80.00%
D201-HFO-R nanocomposites	STR (D201-HFO-S2)	RPBR (D201-HFO-R)
Particle size	18.45 nm	10.34 nm
Fe content	3.85%	4.21%
Specific surface area	16.24 m ² /g	17.31 m ² /g
Pore volume	$0.29 \text{ cm}^{3/\text{g}}$ -	$0.31 \text{ cm}^{3/\text{g}}$
Pore diameter	26.53 nm	29.98 nm
Rate constant	0.90 /min	0.959 /min
Reaction time	12 h	45 min
HSMSMs nano-meshes	Without HSR (SBA-15)	HSR (HSMSM)
Adsorption capacity (U(IV)) ^{S30}	401 mg/g	822 mg/g
HSMSMs-AO nano-meshes	Without HSR (NH ₂ -H-SBA-15)	HSR (HSMSMs-AO)
Adsorption capacity (U(IV)) ^{S31}	780 mg/g	877 mg/g
Cu-BDC@rGO nanocomposites	conventional heating method	MW-MCR
Production yield		Improving 18%

	Adsorption capacity (H ₂)		Improving 26%
	Th-MOF nanostructures	UR (UARM)	MWR (MARM)
	Particle size	84 nm	18 nm
	Decomposition temperature	235°C	290°C
	Specific surface area	1439 m ² /g	2240 m ² /g
	Pore diameter	2.7 nm	1.4 nm
	Adsorption capacity (CH ₄)	177 v/v	255 v/v
Catalysis	Cu-MnO _X / γ -Al ₂ O ₃ nanocomposites	STR	RPBR
	Reaction time	6 h	45 min
	Pore diameter	7.8 nm	9.5 nm
	Molar ratio (Cu ⁰ /Cu ⁺)	1.08	1.24
	Molar ratio (Mn ⁴⁺ /Mn ³⁺)	0.50	0.76
	The cover area ratio of O^{2-}/O_{surf} species	0.60	1.34
	Ph _{pzc}	7.0	5.7
	MnO ₂ /SnO ₂ nanomaterials	Without UR	UR
	Particle size	32.0 nm	5.2 nm
	Specific surface area	41.7 m ² /g	$78.6 \text{ m}^2/\text{g}$

Pore volume	0.077 cm ³ /g-	$0.118 \text{ cm}^{3/\text{g}}$
Decomposition efficiency (H ₂	D ₂) 37.5%	84.4%
CsCu _{0.1} H _{2.9} PMo ₁₁ VO ₄₀ nanopart	ticles Without HSR	HSR
Particle size	35.6 nm	24.3 nm
Specific surface area	$7.5 \text{ m}^{2}/\text{g}$	30.9 m ² /g
Pore volume	$42.3 \times 10^{-3} \text{ cm}^{3}/\text{g}$ -	$77.8 \times 10^{-3} \text{ cm}^{-3}/\text{g}$
Total number of acid sites	$0.74 \text{ mmol/g}_{cat}$	1.13 mmol/g _{cat}
Intercrystallite void	$41.6 \times 10^{-3} \text{ cm}^{3}/\text{g}$	$73 \times 10^{-3} \text{ cm}^{3}/\text{g}$
Surface ratios (V(IV))	0.38	0.5
Conversion efficiency (MAL	.) 70%	83%
Selectivity efficiency (MAA) 80%	87%
Production yield (MAA)	68.3%	73.1%
Turnover frequency		Improving 30%-70%
MnAl-MMO nanosheets	Without HSR	HSR
Particle size	909.1 nm	234.8 nm
Specific surface area	125.3 m ² /g	180.6 m ² /g
Pore volume	$0.27 \text{ cm}^{3}/\text{g}$ -	$0.45 \text{ cm}^{3}/\text{g}$

Pore diameter	8.9 nm	9.8 nm
Mn ⁴⁺ /Mn	22.36%	29.19%
$O_{\alpha}/(O_{\alpha} + O_{\beta})$	47.53%	57.59%
Conversion efficiency (NO) (25°C)	14%	39%
Conversion efficiency (NO) (5 vol% H ₂ O) (200°C)	$91\% \rightarrow 60\%$	$98\% \rightarrow 90\%$
Conversion efficiency (NO) (5 vol% $H_2O + 100 \text{ ppm SO}_2$)	0.50/	700/
(After stopping the injection) (200°C)	83%	/0%
NiMo nanoparticles	HSR	UR
Particle size	70.2 nm	30.7 nm
Ni/(Ni + Mo)	0.383	0.374
API density of the feed	$4^{\circ} \rightarrow 8.1^{\circ}$	$3.4^{\circ} \rightarrow 10.1^{\circ}$
Viscosity reduction	98.6%	99.4%
De-metallization of Ni	44.8 %	54.5 %
Lowest P-value	1.9	2.2
TiO ₂ nanoparticles	Batch mode	SDR
PDI	0.88	0.23-0.55
Production rate (formate)		Improving 15–21%

	BiOCl _X Br _{1-X}	Without MIVM	MIVM
	Morphology	uneven flower-like shape	Uniform petal-like shape
	Particle size	>1 µm	523 nm
Coatings	lignin	Without MCR (raw lignin)	MCR (lignin nanoparticles)
	Particle size	2-10 μm	10–20 nm
		Irregular	1
	Morphology	shape	spherical-like shape
	DV/ t		PVA film with lignin
	PVA	PVA film with raw lignin	nanoparticles
	Morphology	Relatively matte	smooth and homogeneous
	UV-shielding efficacy		Improving 13%
	MHT nanoparticles	Without RPBR (MgAl–CO ₃)	RPBR (MHT-3)
	Particle size ^{S32}	1-120 μm	160 nm
	MgAl-LDH nanoparticles	STR (800 rpm)	RPBR (2400 rpm)
	Reaction time	20 min	20 s
	Particle size	57 nm	31 nm
	Production yield	5.25 g/h	315 g/h

Visible-light transmittance (555 nm)	66.5%	77.4%
ZnO nanoparticles	STR (ZnO-M)	HSR (ZnO-HSS)
Particle size	9.69 nm	7.09 nm
Medium particle sizes	531 nm	26.5 nm
Photocatalytic degradation efficiency of MB (30 min)	38.6%	70.8%
	STR (ZnO-L)	HSR (ZnO-HSS)
Formation time (phenomenon B) of zno		faster 52 times
Exposed surface area		Larger 2.15 times
$Sn_xZn_{1-x}O_{1+x}$ nanoparticles	STR	HSR
Molecular velocity	3 m/s	290 m/s
Molecules internal energy	0.81 eV	174 eV
Particle size	68.06 nm	50.75 nm
Bandgap (after incorporating 5 % Sn)	3.25 eV	3.04 eV
Photocatalytic degradation efficiency of MB (Sn _{0.05} Zn _{0.95} O _{1.05})		Improving 12.2%
Photocatalytic degradation efficiency of MB (Sn _{0.15} Zn _{0.85} O _{1.15})	10.20/	0.(10/
(120 min)	19.3%	9.61%
YbVO ₄ nanostructure	Without UR	UR

	Photocatalytic degradation efficiency of MB	61%	100%
Electrochemistry	Ni-Co-O nanocomposites	STR	MISR
	Specific surface area	56.9 m²/g	65.9 m²/g
	Specific capacitance (1 A/g) ^{S33}	671 F/g	2012 F/g
	Energy density ^{S34}	33.4 Wh/kg	48.3 Wh/kg
	LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ nanoparticles	STR (CI-1100)	HSR (HSM-3-10000)
	Particle size	0.817 μm	0.310 µm
	Discharge capacity (32 ma/g)	155.8 mAh/g	181.1 mAh/g
	Cycling stability (3200 ma/g)	42.2%	83.7%
	Charge transfer resistance	308.9 Ω	117.4 Ω
	Li ⁺ diffusion coefficients	1.03×10 ⁻¹⁵ cm ² /s	$3.51 \times 10^{-14} \text{ cm}^2/\text{s}$
	Prussian blue nanoparticles	Without SDR (C-PB)	SDR (R-PB)
	Particle size	100–120 nm	60–80 nm
	Na	10.32%	13.86%
	Sulfur nanoparticles	Without SDR	SDR
	Particle size	580–600 nm	50-70 nm
	Initial capacity	570 mAh/g	1510 mAh/g

References

S1 H. Liu, N. Yang, J. Jiang, Z. Xiao, C. Wang, B. Lu, R. Wang and L. Tang, *AIChE Journal*, 2025, **71**, e18695.

- S2 L. Falk and J.-M. Commenge, *Chemical Engineering Science*, 2010, **65**, 405-411.
- S3 M. Abaee, S. Sohrabi and M. K. Moraveji, Ceramics International, 2024, 50, 32613-32623.
- S4 L. Chen, H. Zeng, Y. Guo, X. Yang and B. Chen, *Chemical Engineering and Processing-Process Intensification*, 2022, 177, 108991.
- S5 E. Tripodi, A. Lazidis, I. T. Norton and F. Spyropoulos, *Industrial & Engineering Chemistry Research*, 2019, 58, 14859-14872.
- S6 Q. Chen, K. Chen, F. Yu, A. Guo, S. Zou, M. Zhou, J. Li, J. Dan, Y. Li and B. Dai, *Industrial & Engineering Chemistry Research*, 2022, 61, 9300-9310.
- S7 Y.-C. Yang, Y. Xiang, C. Pan, H.-K. Zou, G.-W. Chu, M. Arowo and J.-F. Chen, *Journal of Chemical Engineering of Japan*, 2015, 48, 72-79.
- S8 L. Jiang, L.-H. Wang, Y.-W. Liu, H.-K. Zou, G.-W. Chu and Y. Luo, *Industrial & Engineering Chemistry Research*, 2022, 61, 16823-16831.
- S9 C.-C. Lin and Y.-C. Lin, Ceramics International, 2016, 42, 17295-17302.
- S10 W. Pei, X. Li, W. Li, R. Chi, B. Long, J. Guo and J. Zhang, *Chemical Engineering Science*, 2024, 300, 120640.
- S11 A. W. Pacek, S. Hall, M. Cooke and A. J. Kowalski, *Emulsion formation and stability*, 2013, 127-167.
- S12 Z. Zeng, X. Tian, Y. Qian, Z. Wang, J. Liao, P. Li and X. Zhang, *Powder Technology*, 2024, 433, 119218.
- S13 L.-B. Yao, W. Wu, X.-S. Wu, G.-W. Chu, Y. Luo and B.-C. Sun, Chemical Engineering and Processing-Process Intensification, 2021, 166, 108500.
- S14 S. Al-hengari, Newcastle University, 2012.
- S15 M. Stoller and J. M. Ochando-Pulido, Nanomaterials, 2020, 10, 1321.
- S16 V. Vashisth, K. Nigam and V. Kumar, Chemical Engineering Science, 2021, 232, 116296.
- S17 P. Kadam, C. Jagtap, V. Kadam, C. Bhongale, B. Prasad and K. Gadave, ES Energy & Environment, 2024, 26, 1230.
- S18 J. Sun, G. Yu, K. An, W. Wang, B. Wang, Z. Jiang, C. Sun, Y. Mao, X. Zhao and Z. Song, Frontiers in Energy, 2021, 1-12.
- S19 P. E. Saloga and A. F. Thünemann, Langmuir, 2019, 35, 12469-12482.
- S20 N. Sen, K. Singh, S. Mukhopadhyay and K. Shenoy, *Chemical Engineering and Processing-Process Intensification*, 2021, 166, 108431.

- S21 S. W. Siddiqui, P. J. Unwin, Z. Xu and S. M. Kresta, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 350, 38-50.
- S22 A. S. Fathalla, M. H. Abdel-Aziz, G. H. Sedahmed, M. H. Abdellah and M. A. El-Naggar, *Journal of Water Process Engineering*, 2023, 55, 104108.
- S23 Y. Liu, Y. Zhang, J. Guo, W. Li, M. Zhou and J. Zhang, *Chemical Engineering Journal*, 2023, 451, 138567.
- S24 A. P. Vyas, J. L. Verma and N. Subrahmanyam, Fuel, 2010, 89, 1-9.
- S25 L. Tonuci, C. Paschoalatto and R. Pisani Jr, Waste Management, 2008, 28, 840-848.
- S26 L. Wei, W. Wei, N. Xue, F. Cheng and H. Yang, 2021.
- S27 S. Shan, Q. Jia, L. Jiang, Q. Li, Y. Wang and J. Peng, *Ceramics International*, 2013, **39**, 5437-5441.
- S28 W. Liang, C. J. Coghlan, F. Ragon, M. Rubio-Martinez, D. M. D'Alessandro and R. Babarao, *Dalton Transactions*, 2016, 45, 4496-4500.
- S29 A. A. Markeb, J. Moral-Vico, A. Sánchez and X. Font, Results in Chemistry, 2025, 13, 102041.
- S30 H. Dan, Y. Ding, X. Lu, F. Chi and S. Yuan, Journal of Radioanalytical and Nuclear Chemistry, 2016, 310, 1107-1114.
- S31 X. Wang, Q. Wang, Z. Wang, K. Ding, C. Gao and G. Zhu, *Environmental Nanotechnology*, *Monitoring & Management*, 2022, 17, 100614.
- S32 W. Xie, H. Peng and L. Chen, Journal of Molecular Catalysis A: Chemical, 2006, 246, 24-32.
- S33 C. Wang, X. Zhang, D. Zhang, C. Yao and Y. Ma, *Electrochimica Acta*, 2012, 63, 220-227.
- S34 H. Gao, X. Wang, G. Wang, C. Hao, S. Zhou and C. Huang, Nanoscale, 2018, 10, 10190-10202.