Surface Ligand Networking Promotes Intersystem Crossing in the Au₁₈(SR)₁₄ Nanocluster

Guiying He,^a Zhongyu Liu,^a Yitong Wang,^a Matthew Y. Sfeir,^{bc} and Rongchao Jin^{*a}

^a Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States

^b Department of Physics, Graduate Center, City University of New York, New York, NY 10016, United States

^c Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY 10031, United States

*To whom correspondence should be addressed, Email: rongchao@andrew.cmu.edu

Chemicals

Chemicals Tetrachloroauric (III) acid (HAuCl₄·₃H₂O, 99.99% metal basis, Aldrich), 2,4dimethylbenzenethiol (DMBT, C₈H₉SH, 98%, Aldrich), cyclohexanethiol (CHT, 97%, Aldrich), sodium borohydride (NaBH₄, Aldrich), tetraoctylammonium bromide (TOAB, \geq 98%, Fluka), triethylamine (Et₃N, 99%), tetrahydrofuran (HPLC grade, \geq 99.9%, Aldrich), toluene (HPLC grade, \geq 99.9%, Aldrich), dichloromethane (DCM, ACS reagent, \geq 99.5%, Aldrich), acetonitrile (HPLC grade, \geq 99.9%, Aldrich), methanol (MeOH, HPLC grade, \geq 99.9%, Aldrich), ethanol (EtOH, HPLC grade, \geq 99.9%, Aldrich). All chemicals were used as received without further purification. Deionized water was prepared with a Barnstead NANOpure Diamond system (18.2 M Ω cm). Thinlayer chromatography (TLC) plates were purchased from iChromatography (silica gel, 250 µm).

Synthesis of Au₁₈ (DMBT)₁₄

Au₁₈(DMBT)₁₄ was prepared following a published procedure.¹ Briefly, in a flask, HAuCl₄·3H₂O (78.99 mg, 0.2 mmol) and TOAB (136.7 mg, 0.25 mmol) were combined and dissolved with 28 mL of THF by continuous stirring. After 15 minutes, DMBT (138 μ L) was added to the mixture while it was kept in an ice bath. Next, 70 μ L of Et₃N was added all at once, and the stirring speed was decreased to 100 rpm. The mixture was stirred for 30 minutes. Then, a freshly prepared aqueous solution of NaBH₄ (47.5 mg, 1.25 mmol, in 2 mL solution) was added dropwise to the reaction mixture over a period of 5 minutes. The reaction was stirred for an additional 8 hours at 0 °C. After that, the solvent was removed by rotary evaporation, yielding a dark, oily substance. Methanol was used to precipitate the oily mixture, and the precipitate was washed with excess methanol. The black product obtained was further purified by thin-layer chromatography (TLC) using a hexane and dichloromethane mixture (1:1, v/v) as the developing solvent. The yield of Au₁₈(DMBT)₁₄ was about 5%, calculated based on gold atoms.

Synthesis of Au₁₈ (CHT)₁₄

The synthesis of crude $Au_{18}(CHT)_{14}$ was carried out using a previous method² and purification was done by thin-layer chromatography (TLC). The mobile phase was a mixture of hexane and

dichloromethane in a 2:1 vol. ratio. The pure compound appeared as a grey band on the TLC plate, whereas the crude mixture also contained $Au_{28}(CHT)_{20}$, which appeared as an orange band.

Optical measurements

UV-Vis-NIR spectra were collected on a UV-3600 Plus UV-Vis-NIR spectrophotometer (Shimazu). Steady-state photoluminescence spectra were measured on a FLS-1000 spectrofluorometer (Edinburgh) with a wide-range photomultiplier tube (PMT-1700, 500 - 1700 nm) cooled to -80 °C by liquid nitrogen. The PL lifetimes were measured by time-correlated single photon counting (TCSPC) on the same instrument, with excitation at 450 nm (~100 ps pulsed laser). For r.t. measurement, the NCs were dissolved in toluene, while for cryogenic measurements, the NCs were dissolved in 2-MeTHF (clear "glass" formation at cryogenic temperatures).

A relative method was performed to determine the quantum yield of $Au_{18}(DMBT)_{14}$ and $Au_{18}(CHT)_{14}$ at room temperature using $Au_{25}(PET)_{18}^{-1}$ (counterion: tetraoctylammonium) as the reference (QY = 1.0% in CDCl₃). The low temperature QY for $Au_{18}(DMBT)_{14}$ was determined by integrating the peak area and comparison with the peak area of $Au_{18}(DMBT)_{14}$ at room temperature after correcting the absorbance enhancement at low temperatures.

Transient absorption measurements were carried out using a broadband pump-probe setup, which is pumped by a commercial Ti:Sapphire laser (Coherent Astrella, 1 kHz) with an optical parametric amplifier (OPerA Solo, Light Conversion). For fs-TA measurements, the probe light is generated by focusing the fundamental pulse into a sapphire plate. The probe light is split into signal and reference beams. The pump-probe delay was controlled by a mechanical delay line. For ns-TA measurements, the probe light is generated with a fiber laser (Leukos), and the delay up to microseconds are controlled by an electronic delay configuration. The Au₁₈ nanoclusters were excited at 400 nm, which is the same for both fs- and ns-TA measurements. TA measurements were performed in toluene and the optical density of the solutions was adjusted to ~0.3 OD (2 mm cuvette) at the excitation wavelength. The polarization of pump and probe pulse was set to magic angle (54.7°) to measure the isotropic signal.

Data fitting

The transient absorption spectra were analyzed using the publicly available program Glotaran based on the statistical fitting package TIMP.^{3,4} A sequential model was adopted for the fs and ns TA data to give the evolution associated spectra (EAS).

Supporting figures from transient absorption measurements and data analysis:

Figure S1. Global analysis of the ns-TA data of Au₁₈(CHT)₁₄.

Figure S2. Global analysis of the ns-TA data of Au₁₈(DMBT)₁₄.

Figure S3. The kinetics of the fs-TA measurements of $Au_{18}(CHT)_{14}$ and global fitting.

Figure S4. The kinetics of the ns-TA measurements of Au₁₈(CHT)₁₄ and global fitting.

Figure S5. The kinetics of the fs-TA measurements of Au₁₈(DMBT)₁₄ and global fitting.

Figure S6. The kinetics of the ns-TA measurements of $Au_{18}(DMBT)_{14}$ and global fitting.

Temperature-dependent PL measurements:

Figure S7. The normalized temperature-dependent PL spectra of Au₁₈(DMBT)₁₄.

Figure S8. Temperature-dependent PL peak wavelength of Au₁₈(DMBT)₁₄.

Figure S9. Temperature-dependent PLQY of Au₁₈(DMBT)₁₄.

References

- 1. Z. Liu, Y. Wang, W. Ji, X. Ma, C. G. Gianopoulos, S. Calderon, T. Ma, L. Luo, A. Mazumder, K. Kirschbaum, E. C. Dickey, L. A. Peteanu, D. Alfonso and R. Jin, *ACS Nano*, 2025, **19**, 9121–9131.
- 2. A. Das, C. Liu, H. Y. Byun, K. Nobusada, S. Zhao, N. Rosi and R. Jin, *Angew. Chem. Int. Ed.*, 2015, **54**, 3140–3144.
- 3. I. H. M. van Stokkum, D. S. Larsen and R. van Grondelle, *Biochim. Biophys. Acta Bioenerg.*, 2004, **1657**, 82–104.
- 4. J. J. Snellenburg, S. P. Laptenok, R. Seger, K. M. Mullen and I. H. M. van Stokkum, *J. Stat. Soft.*, 2012, **49**, 1–22.