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S1. Supplementary Figures

Fig. S1. SEM image for Cu mesh.
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Fig. S2. The mechanism of Ni/Ni(OH): precatalysts formation.
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Fig. S3. oxidization CV curves for the Ni/Ni(OH): precatalysts.
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Fig. S4. The EDS-mapping of Ni/NiOOH-90.
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Fig. S5. XRD patterns of pure metal Ni.

Fig. S6. SEM for varied loading amount. (a) Ni/NiOOH-90 deposited for 20 s. (b)



Ni/NiOOH-90 deposited for 50 s. (c) Ni/NiOOH-90 deposited for 100 s. (d)
Ni/NiOOH-25 deposited for 300 s.
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Fig. S7. Oxidization CV for varied loading amount.
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Fig. S8. Cyclic voltammogram as a function of scan rate.




Fig. S9. SEM image for after stability test of Ni/NiOOH-90.
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Fig. S10. SEM images for Ni/NiOOH-25 and Ni/NiOOH-90.
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Fig. S11. The Tafel slope of (a) Ni/NiOOH-90 and (b) Ni/NiOOH-25.
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Fig. S12. Electrochemical double-layer capacitance of (a) Ni/NiOOH-90 and (b)
Ni/NiOOH-25.
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Fig. S13. Cyclic voltammogram as a function of scan rate.
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Fig. S14. XPS spectra of Ni/NiOOH-90 after reactivating.
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Fig. S16. oxidization CV curves for the Ni/NiOOH-90.
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Fig. S17. LSV of samples with 90% iR-correction before reactivating.
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Fig. S18. The top and side view of the calculation models of Ni/Ni(OH),-S, Ni/NiOOH-

S, Ni/Ni(OH),-L, and Ni/NiOOH-L.




Fig. S19. The differential charge density of (a) Ni/Ni(OH),-S, (b) Ni/NiOOH-S, (c)
Ni/Ni(OH),-L, and (d) Ni/NiOOH-L.
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Fig. S20. The Bader charge analyses of (a) Ni/Ni(OH),-S, (b) Ni/NiOOH-S, (c)
Ni/Ni(OH),-L, and (d) Ni/NiOOH-L.
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Fig. S21. The DFT calculation models of Pure Ni, Ni/Ni(OH),-L, Ni/NiOOH-L,
Ni/Ni(OH),-S, and Ni/NiOOH-S.

Fig. S22. The top and side view of the calculation models of H20 adsorption on (a)
Ni/Ni(OH),-S, (b) Ni/NiOOH-S, (c¢) Ni/Ni(OH),-L, and (d) Ni/NiOOH-L.
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Fig. S23. (a) The calculated Gibbs free energy of *H at different sites on different



models. (b) Potential energy profile of *H,0O dissociation on different models.
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Fig. S25. The d-band DOS of Ni, Ni/NiOOH-S, Ni/NiOOH-L and Ni/NiOOH-L.
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Fig. S26. CV curves of the precatalysts (a) Ni/Ni(OH),-90 (b) Ni/Ni(OH),-25.
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Fig. S27. The calculated *OH replacement energy by H,O according to adsorption

energies of *OH and H,O.
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Fig. S28 Calculated free energy diagram for hydrogen migration path on Ni/NiOOH-S.
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Fig. S29. Multiply CV curves of the samples. (a) Ni/NiOOH-90 oxidating to 900 mV.

(b) Ni/NiOOH-90 oxidating to 1700 mV.
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Fig. S30. Multiply oxidation CV of Ni/NiOOH-90.

S2. Supplementary Tables

Table S1. Comparison of HER performance in 1.0 M KOH for Ni/NiOOH with other

catalysts.
Overpotential
Catalysts (mV, j=10 mA
cm?)
Ni/NiOOH 30
NiCu/Ni(OH), 23

Ni/Ni(OH), 30
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