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S1. Supplementary Figures

Fig. S1. SEM image for Cu mesh.
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Fig. S2. The mechanism of Ni/Ni(OH)₂ precatalysts formation. 

Fig. S3. oxidization CV curves for the Ni/Ni(OH)₂ precatalysts.

Fig. S4. The EDS-mapping of Ni/NiOOH-90.



Fig. S5. XRD patterns of pure metal Ni.

Fig. S6. SEM for varied loading amount. (a) Ni/NiOOH-90 deposited for 20 s. (b) 



Ni/NiOOH-90 deposited for 50 s. (c) Ni/NiOOH-90 deposited for 100 s. (d) 

Ni/NiOOH-25 deposited for 300 s.

Fig. S7. Oxidization CV for varied loading amount.

Fig. S8. Cyclic voltammogram as a function of scan rate.

 



Fig. S9. SEM image for after stability test of Ni/NiOOH-90.

Fig. S10. SEM images for Ni/NiOOH-25 and Ni/NiOOH-90.

Fig. S11. The Tafel slope of (a) Ni/NiOOH-90 and (b) Ni/NiOOH-25.



Fig. S12. Electrochemical double-layer capacitance of (a) Ni/NiOOH-90 and (b) 

Ni/NiOOH-25.

Fig. S13. Cyclic voltammogram as a function of scan rate.



Fig. S14. XPS spectra of Ni/NiOOH-90 after reactivating.

Fig. S15. XRD patterns of Ni/NiOOH-90.



Fig. S16. oxidization CV curves for the Ni/NiOOH-90.

Fig. S17. LSV of samples with 90% iR-correction before reactivating. 

Fig. S18. The top and side view of the calculation models of Ni/Ni(OH)2-S, Ni/NiOOH-

S, Ni/Ni(OH)2-L, and Ni/NiOOH-L.



Fig. S19. The differential charge density of (a) Ni/Ni(OH)2-S, (b) Ni/NiOOH-S, (c) 

Ni/Ni(OH)2-L, and (d) Ni/NiOOH-L.

Fig. S20. The Bader charge analyses of (a) Ni/Ni(OH)2-S, (b) Ni/NiOOH-S, (c) 

Ni/Ni(OH)2-L, and (d) Ni/NiOOH-L.



Fig. S21. The DFT calculation models of Pure Ni, Ni/Ni(OH)2-L, Ni/NiOOH-L, 

Ni/Ni(OH)2-S, and Ni/NiOOH-S.

Fig. S22. The top and side view of the calculation models of H2O adsorption on (a) 

Ni/Ni(OH)2-S, (b) Ni/NiOOH-S, (c) Ni/Ni(OH)2-L, and (d) Ni/NiOOH-L.

Fig. S23. (a) The calculated Gibbs free energy of *H at different sites on different 



models. (b) Potential energy profile of *H2O dissociation on different models.

Fig. S24. The DOS of Ni, Ni(OH)2, and Ni/NiOOH.

 

Fig. S25. The d-band DOS of Ni, Ni/NiOOH-S, Ni/NiOOH-L and Ni/NiOOH-L.



Fig. S26. CV curves of the precatalysts (a) Ni/Ni(OH)2-90 (b) Ni/Ni(OH)2-25.

Fig. S27. The calculated *OH replacement energy by H2O according to adsorption 

energies of *OH and H2O.

Fig. S28 Calculated free energy diagram for hydrogen migration path on Ni/NiOOH-S.



Fig. S29. Multiply CV curves of the samples. (a) Ni/NiOOH-90 oxidating to 900 mV. 

(b) Ni/NiOOH-90 oxidating to 1700 mV.

Fig. S30. Multiply oxidation CV of Ni/NiOOH-90.

S2. Supplementary Tables

Table S1. Comparison of HER performance in 1.0 M KOH for Ni/NiOOH with other 

catalysts.

Catalysts
Overpotential
(mV, j=10 mA 

cm-2)
References

Ni/NiOOH 30 This work
NiCu/Ni(OH)2 23 Angew. Chem. 2022, 134, e202202518. 1

Ni/Ni(OH)2 30 international journal of hydrogen energy 46 (2021) 



(electrodeposition) 26861 e26872. 2

N, Pt-MoS2 38 Energy Environ. Sci., 2022, 15, 1201-1210. 3

Ni/Ni(OH)2 
(hydrothermal) 39 Adv. Mater. 2020, 1906915 4

Ni/Ni(OH)2 (sintering) 40 Adv. Energy Mater. 2025, 2406080 5

Ni/Ni(OH)2 

(electrodeposition) 57 J. Mater. Chem. A, 2020, 8, 23323–23329 6

Ni(OH)2@Ni-N/Ni-
C/NF 60 Nat Commun, 2023, 14:547. 7

Ni/Ni(OH)2 
(hydrothermal) 72 Journal of Energy Chemistry 61 (2021) 236–242 8 

Ni2P/NiMoOx 91 ACS Catal. 2023, 13, 9792−9805 9

Ni(OH)2@NM 135
Applied Catalysis B: Environmental, 2023, 325: 

122296. 10

Ni(OH)2@NF 153
Applied Catalysis B: Environmental, 2023, 325: 

122296. 10

Catalysts
Stability test 

current
(mA cm-2)

Stability test 
time (h)

References

Ni/NiOOH 2000 300 This work

NiCu/Ni(OH)2 10 100
Angew. Chem. 2022, 134, 

e202202518. 1

Ni/Ni(OH)2 
(electrodeposition) 10 24

international journal of hydrogen 

energy 46 (2021) 26861 e26872. 2

Ni/Ni(OH)2 
(hydrothermal) 10 10 Adv. Mater. 2020, 1906915 4

Pt/Ni(OH)2 10 10 Nat. Mater. 2023,22,1022-1029 11

Ni/Ni(OH)2 

(electrodeposition) 10 27
J. Mater. Chem. A, 2020, 8, 

23323–23329 6

Ni/Ni(OH)2 
(hydrothermal) 10 28

Journal of Energy Chemistry 61 

(2021) 236–242 8

Ni2P/NiMoOx 200 100 ACS Catal. 2023, 13, 9792−9805 9

Ru/RuO2 10 300
Energy Environ. Sci., 2021, 14, 

5433–5443 12

PtRu/RuO2 250 100 Nat. Commun. (2024) 15:144713

Ru@Cu−TiO2/Cu 500 160
J. Am. Chem. Soc. 2023, 145, 

21419−21431 14

Ru/MoOx 1000 200
Adv. Energy Mater. 2023, 

2301492 15
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