Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting Information

for

Introducing Indole Fused Heterocycles as Novel Donor Units in Dye-Sensitized Solar Cells

Nitha P. R., *^{a,c} Jayadev V., ^{b,c} Saranya P. V., ^a Suraj Soman, ^{*b,c} Jubi John^{*a,c}

^aChemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.

^bCentre for Sustainable Energy Technologies (C-SET), CSIR-National Institute for Interdisciplinary Science and

Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.

^cAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.

E-mail: prnitha92@gmail.com; suraj@niist.res.in; jubijohn@niist.res.in

Entry	Table of Contents	Page No
1	Experimental Section, synthesis and characterization of organic	2-15
	photosensitizers	
2	¹ H NMR & ¹³ C NMR Spectra	16-41
3	Figure S1. Charge extraction plot for devices fabricated with IID-	42
	7, IID-8, and IID-9 as sensitizers	
4	Figure S2. Charge extraction plot for devices fabricated with	42
	BID-4, BID-5, and BID-6 as sensitizers	
5	Figure S3. Transport time (τ_t) measured using transient photocurrent decay for DSSCs with BID-4 , BID-5 , and BID-6 sensitizers.	43

Experimental Section

General Methods

All the chemicals and solvents used in this study were of the highest commercially available guality and were employed without further refinement. Gravity column chromatography was performed using silica, and mixtures of hexane-ethyl acetate were used for elution. The melting points were determined using a Buchi melting point apparatus and were uncorrected. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded using a Bruker AMX 500 spectrophotometer (500 MHz for ¹H NMR and 125 MHz for ¹³C{1H} NMR) at 300 K unless otherwise specified. Chemical shifts δ are given in parts per million (ppm) and referenced to the external standard TMS or internal solvent standard. ¹H NMR coupling constants (J) are reported in Hertz (Hz) and multiplicities are indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and dd (doublet of doublets). Mass spectra were recorded under ESI/HRMS at 60,000 resolution using Thermo Scientific Exactive mass spectrometer. To investigate the electrochemical properties of these dyes, cyclic voltammetry (CV) was carried out using an electrochemical workstation (model: HI6211B, M/s. Shanghai Chen Hua Co. Ltd., China) with 0.1 M of Bu4NPF6 as a supporting electrolyte in DCM at a scan rate of 50 mV s-1. The setup included an Ag/AgCl reference electrode, a glassy carbon working electrode, a platinum counter electrode, and ferrocene as the internal standard. The oxidation potentials of the dyes were calculated with respect to ferrocene and were converted to NHE using the equation, EHOMO = [Eox(Fc/Fc+) + 0.63 V]. The lowest unoccupied molecular orbital (LUMO) level (ELUMO) was calculated as the difference EHOMO - EO-0. EO-0 (band gap) was determined from the tangent intercept of absorption edges. The UV-visible absorbance studies were studied in THF using a SCHIMADZU UV-1800 UV-Visible spectrophotometer, using commercially available 1 cm quartz cuvette purchased from Sigma-Aldrich.

Synthesis of 5-bromo-2-(2-nitrophenyl)-1H-indole (3): To a 100 mL Schlenk flask, 5-bromoaniline **1** (2 g, 10.2 mmol), 1-iodo-2-nitrobenzene **2** (3 g, 12.2 mmol), Pd(OAc)₂ (114 mg, 5 mol%), K₂CO₃ (2.8 g, 20.2 mmol), and norbornene (1.9 g, 20.2 mmol) were added. The reaction vessel was degassed using a vacuum pump and backfilled with

argon. This procedure was repeated three times, followed by the addition of a 0.5 M solution of H₂O in DMA under an argon atmosphere. The reaction mixture was then stirred at 70 °C for 48 h. After completion, the crude reaction mixture was filtered through celite and extracted using ethyl acetate. The organic layer was washed successively with water and brine and then dried over anhydrous Na₂SO₄. The solvent removal was followed by column purification on silica gel to obtain 3 as a red solid (2.2 g, 69%). m.p. 134-136 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.48 (s, 1H), 7.78 (d, J = 8 Hz, 1H), 7.70 (s, 1H), 7.62-7.57 (m, 2H), 7.46 (t, J = 7 Hz, 1H), 7.25 (d, J = 9 Hz, 1H), 7.19 (d, J = 4.5 Hz, 1H), 6.57 (s, 1H) ppm. ¹³C NMR (125 MHz, (CDCl₃): δ 149.0, 135.5, 133.7, 132.5, 131.8, 129.9, 129.1, 126.5, 126.1, 124.5, 123.5, 113.7, 112.7, 103.9 ppm. HRMS (ESI-Orbitrap) m/z: (M-H)⁺ calcd for C₁₄H₈BrN₂O₂: 314.9775, found: 314.9765.

Synthesis of 3-bromo-10-dodecyl-5,10-dihydroindolo[3,2-b]indole (4): To a stirred solution of 3 (2 g, 6.30 mmol) in dry DMF, NaH (2.26 g, 9.45 mmol) was added under a nitrogen atmosphere at 0 °C. The reaction mixture was warmed to room temperature and stirred for 30 min. The reaction mixture was cooled again to 0 °C, and 1bromododecane (1.8 g, 7.56 mmol) was added dropwise and stirred at room temperature for 8 h. Upon completion, the reaction mixture was quenched by slowly adding water and then extracted with ethyl acetate. The organic layer was washed successively with water and brine and then dried over anhydrous Na₂SO₄. After removal of the solvent, column purification of the crude was performed on silica gel to isolate the alkylated product **4** as a red-coloured viscous oil (2.9 g, 95%). Rf: 0.48 (5% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.98 (d, J = 8.5 Hz, 1H), 7.66 (s, 1H), 7.63 (t, J = 7.5 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.45 (d, J = 7.5 Hz, 1H), 7.25 (d, J = 8.5 Hz, 1H), 7.18-7.16 (m, 1H), 6.32 (s, 1H), 3.83 (t, J = 7 Hz, 2H), 1.54-1.51 (m, 2H), 1.22-1.04 (m, 18H), 0.80 (t, J = 7 Hz, 3H)) ppm. ¹³C NMR (125 MHz, (CDCl₃): δ 149.6, 136.3, 135.6, 133.4, 132.6, 129.9, 129.5, 127.3, 124.8, 124.4, 123.3, 113.0, 111.5, 102.3, 44.5, 31.9, 29.7, 29.6, 29.6, 29.5, 29.4, 29.0, 26.8, 22.7, 14.2 ppm. HRMS (ESI-Orbitrap) m/z: $(M+H)^+$ calcd for $C_{26}H_{34}BrN_2O_2$: 485.1804, found: 485.1802.

Synthesis of 3-bromo-10-dodecyl-5,10-dihydroindolo[3,2-b]indole (5): To the alkylated intermediate **4** (2.9 g, 5.90 mmol) in DMA, PPh₃ (3.86 g, 14.7 mmol) was added and stirred the reaction mixture for 24 h at 165 °C. After completion of the

reaction, the mixture was extracted with ethyl acetate and washed successively with water and brine. After solvent removal, column purification of the crude was performed on silica gel to isolate **5** as a colourless solid (2.4 g, 89%). m.p. 74-76 °C. ¹H NMR (500 MHz, (CD₃)₂CO): δ 10.38 (s, 1H), 7.95-7.93 (m, 2H), 7.59-7.57 (m, 2H), 7.34 (d, J = 8.5 Hz, 1H), 7.26 (t, J = 7.5 Hz, 1H), 7.16 (t, J = 7.5 Hz, 1H), 4.62 (t, J = 7 Hz, 2H), 2.01-1.96 (m, 2H), 1.44-1.39 (m, 2H) 1.35-1.22 (m, 16H), 0.88 (t, J = 7.5 Hz, 3H) ppm. ¹³C NMR (125 MHz, (CD₃)₂CO): δ 141.3, 139.2, 127.9, 123.7, 123.6, 122.4, 120.2, 118.6, 117.7, 116.1, 114.8, 112.4, 111.6, 110.3, 44.9, 31.7, 30.2, 26.7, 22.4, 13.5 ppm. HRMS (ESI-Orbitrap) m/z: (M)⁺ calcd for C₂₆H₃₃BrN₂: 452.1827, found: 452.1839.

Synthesis of 3-bromo-5,10-didodecyl-5,10-dihydroindolo[3,2-b]indole (6): NaH (182 mg, 7.6 mmol) was added to a stirred solution of 5 (2.3 g, 5.07 mmol) in dry DMF under a nitrogen atmosphere at 0 °C. The reaction mixture was warmed to room temperature and stirred for 30 min. The reaction mixture was cooled again to 0 °C, and 1bromododecane (1.51 g, 6.08 mmol) was added dropwise and stirred at room temperature for 8 h. Upon completion, the reaction mixture was quenched by slowly adding water and then extracted with EtOAc. The organic layer was washed successively with water and brine and then dried over anhydrous Na₂SO₄. After solvent removal, column purification of the crude was performed on silica gel to isolate alkylated product 6 as a colourless solid (2.9 g, 92%). m.p. 80-84 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.86 (s, 1H), 7.77 (d, J = 8 Hz, 1H), 7.41 (d, J = 8 Hz, 1H), 7.31-7.25 (m, 3H), 7.13 (t, J = 7.5 Hz, 1H), 4.42-4.38 (m, 4H), 1.93-1.87 (m, 4H), 1.38-1.18 (m, 36H), 0.82 (t, J = 7 Hz, 6H) ppm. ¹³C NMR (125 MHz, (CDCl₃): δ 140.8, 139.0, 126.8, 124.8, 124.0, 122.2, 120.0, 118.2, 117.9, 115.8, 115.2, 114.3, 111.0, 110.8, 109.9, 45.4, 45.3, 31.9, 30.2, 29.6, 29.6, 29.5, 29.5, 29.5, 29.4, 29.4, 29.3, 27.1, 22.7, 14.1 ppm. HRMS (ESI-Orbitrap) m/z: (M)⁺ calcd for C₃₈H₅₇BrN₂: 620.3705, found: 620.3683.

Synthesis of 4-(5,10-didodecyl-5,10-dihydroindolo[3,2-*b***]indol-3-yl)benzaldehyde (10): A mixture of 6 (100 mg, 0.16 mmol.), 4-formylphenylboronic acid 7 (28 mg, 0.19 mmol), Pd(PPh₃)₄ (18 mg, 10 mol%), and K₂CO₃ (110 mg, 0.8 mmol) were weighed into a Schlenk tube and degassed for 10 minutes. Degassed THF and water were then added in a 3:1 ratio, and the reaction mixture was purged with argon and stirred at 70 °C for 24 h. After completion of the reaction, the solvent was evaporated under vacuum, and**

the residue obtained was subjected to silica column chromatography (with mixtures of ethyl acetate in hexane as eluent) yielding product **10** as a yellow solid (72 mg, 70%). m.p. 75-77 °C. ¹H NMR (500 MHz, CDCl₃): δ 10.07 (s, 1H), 8.08 (s, 1H), 7.98 (d, J = 8.5 Hz, 2H), 7.88-7.84 (m, 3H), 7.60-7.58 (m, 1H), 7.54 (d, J = 9 Hz, 1H), 7.49 (d, J = 8 Hz, 1H), 7.32 (t, J = 8 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 4.56-4.50 (m, 4H), 2.02-1.97 (m, 14H), 1.46-1.40 (m, 4H), 1.38-1.33 (m, 4H), 1.28-1.20 (m, 28H), 0.88-0.84 (m, 6H) ppm. ¹³C NMR (125 MHz, (CDCl₃): δ 192.0, 148.7, 140.8, 140.5, 134.4, 130.4, 129.8, 127.6, 126.8, 126.0, 122.0, 121.0, 118.3, 117.8, 116.6, 115.2, 114.5, 110.2, 109.9, 45.5, 45.4. 31.9, 31.9, 30.3, 30.3, 29.6, 29.5, 29.5, 29.5, 29.4, 29.3, 27.2, 27.2, 22.7, 14.1 ppm. HRMS (ESI-Orbitrap) m/z: (M)⁺ calcd for C₄₅H₆₂N₂O: 646.4862, found: 646.4881.

Synthesis of 2-cyano-3-(4-(5,10-didodecyl-5,10-dihydroindolo[3,2-b]indol-3yl)phenyl)acrylic acid (IID-4): A mixture of aldehyde 10 (50 mg, 0.077 mmol), cyanoacetic acid (20 mg, 0.23 mmol), and ammonium acetate (30 mg, 0.38 mmol) in acetic acid was heated under reflux overnight under argon atmosphere. After cooling the reaction mixture to room temperature, it was precipitated by pouring it into water. The precipitate was then washed with water and dried in a vacuum oven. The product IID-4 was obtained as an orange solid (44 mg, 80% yield). m.p. 98-100 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.28 (s, 1H), 8.08 (d, J = 8.5 Hz, 2H), 8.04 (s, 1H), 7.82-7.77 (m, 3H), 7.54 (d, J = 8.5 Hz, 1H), 7.48 (d, J = 9 Hz, 1H), 7.42 (d, J = 8.5 Hz, 1H), 7.26 (t, J = 8 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 4.49-4.43 (m, 4H), 1.97-1.93 (m, 4H), 1.38-1.34 (m, 4H), 1.30-1.13 (m, 32H), 0.81-0.77 (m, 6H) ppm. ¹³C NMR (125 MHz, (CDCl₃): δ 166.7, 156.2, 148.2, 140.8, 140.6, 132.3, 129.2, 129.0, 127.7, 126.8, 125.9, 122.0, 120.9, 118.3, 117.8, 116.6, 115.6, 115.2, 114.5, 110.3, 109.9, 100.1, 45.6, 45.4, 31.9, 30.3, 29.6, 29.5, 29.5, 29.4, 29.3, 27.2, 27.2, 22.7, 14.1 ppm. HRMS (ESI-Orbitrap) m/z: (M)⁺ calcd for C₄₈H₆₃N₃O₂: 713.4920, found: 713.4953.

Synthesis of 5-(5,10-didodecyl-5,10-dihydroindolo[3,2-*b*]indol-3-yl)thiophene-2carbaldehyde (11): A mixture of 6 (100 mg, 0.16 mmol.), 5-formyl-2-thiopheneboronic acid 8 (30 mg, 0.19 mmol), Pd(PPh₃)₄ (18 mg, 10 mol%), and K₂CO₃ (110 mg, 0.8 mmol) were weighed into a Schlenk tube and degassed for 10 minutes. Degassed THF and water were then added in a 3:1 ratio, and the reaction mixture was purged with argon and stirred at 70 °C for 24 h. The solvent was evaporated under vacuum, and the residue obtained was purified by silica column chromatography (with mixtures of ethyl acetate in hexane as eluent) yielding product **11** as a yellow solid (57 mg, 55%). m.p. 58-60 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.81 (s, 1H), 8.06 (s, 1H), 7.76 (d, J = 8 Hz, 1H), 7.69 (d, J = 4 Hz, 1H), 7.54-7.52 (m, 1H), 7.41-7.39 (m, 2H), 7.35 (d, J = 4 Hz, 1H), 7.23 (t, J = 8 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 4.46-4.41 (m, 4H), 1.95-1.89 (m, 4H), 1.39-1.14 (m, 36H), 0.81-0.77 (m, 6H) ppm. ¹³C NMR (125 MHz, (CDCl₃): δ 181.6, 155.9, 140.1, 139.9, 136.9, 128.2, 125.9, 124.7, 122.3, 121.6, 121.1, 119.1, 117.4, 116.8, 115.0, 113.9, 113.4, 109.2, 108.9, 44.5, 44.4, 30.8, 29.3, 29.2, 28.6, 28.5, 28.5, 28.4, 28.4, 28.3, 26.2, 26.1, 21.7, 13.1 ppm. HRMS (ESI-Orbitrap) m/z: (M+H)⁺ calcd for C₄₃H₆₁BrN₂OS: 653.4505, found: 653.4517.

Synthesis of (2-cyano-3-(5-(5,10-didodecyl-5,10-dihydroindolo[3,2-b]indol-3yl)thiophen-2-yl)acrylic acid (IID-5): A mixture of aldehyde 11 (50 mg, 0.076 mmol), cyanoacetic acid (20 mg, 0.23 mmol), ammonium acetate (30 mg, 0.38 mmol) in acetic acid was heated at reflux overnight under argon atmosphere. After cooling the reaction mixture to room temperature, it was precipitated by pouring into water. The precipitate was then washed with water and dried in a vacuum oven. The product IID-5 was obtained as red coloured solid (38 mg, 69%). m.p. 140-142 °C. ¹H NMR (500 MHz, $(CD_3)_2$ CO): δ 8.32 (s, 1H), 8.27 (s, 1H), 7.88 (d, J = 4 Hz, 1H), 7.81 (d, J = 7.5 Hz, 1H), 7.61-7.60 (m, 3H), 7.51 (d, J = 8 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H), 7.04 (t, J = 7 Hz, 1H), 4.57-4.51 (m, 4H), 1.89-1.86 (m, 4H), 1.35-1.28 (m, 4H), 1.25-1.05 (m, 32H), 0.74-0.70 (m, 6H) ppm. ¹³C NMR (125 MHz, (CD₃)₂ CO): δ 165.3, 156.4, 146.5, 141.0, 140.7, 133.7, 126.8, 125.7, 123.4, 123.2, 122.2, 120.3, 118.4, 118.0, 116.0, 114.9, 114.4, 110.8, 110.1, 45.0, 44.8, 31.7, 30.1, 30.0, 29.7, 26.7, 26.7, 22.4, 13.5 ppm. HRMS (ESI-Orbitrap) m/z: $(M+H)^+$ calcd for C₄₆H₆₂N₃O₂S: 720.4563, found: 720.4572.

Synthesis of 5-(5,10-didodecyl-5,10-dihydroindolo[3,2-*b*]indol-3-yl)furan-2carbaldehyde (12): A mixture of 6 (100 mg, 0.16 mmol.), 5-formyl-2-furanylboronic acid 9 (22 mg, 0.19 mmol), Pd(PPh₃)₄ (18 mg, 10 mol%), K₂CO₃ (110 mg, 0.8 mmol) were weighed into a Schlenk tube and degassed for 10 minutes. Degassed THF and water were then added in a 3:1 ratio, and the reaction mixture was purged with argon and stirred at 70 °C for 24 h. After completion of the reaction, the solvent was evaporated under vacuum, and the residue obtained was purified by silica column chromatography (with mixtures of ethyl acetate in hexane as eluent) yielding product **12** as a yellow solid (61 mg, 60%). m.p. 62-64 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.57 (s, 1H), 8.22 (s, 1H), 7.76 (d, J = 7.5 Hz, 1H), 7.67 (d, J = 9 Hz, 1H), 7.42 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 3.5 Hz, 1H), 7.26 (t, J = 8 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 6.76 (d, J = 4 Hz, 1H), 4.50-4.42 (m, 4H), 1.95-1.91 (m, 14H), 1.37-1.32 (m, 4H), 1.26-1.13 (m, 32H), 0.81-0.77 (m, 6H) ppm. ¹³C NMR (125 MHz, (CDCl₃): δ 176.9, 161.8, 151.6, 140.8, 140.7, 126.8, 125.9, 122.1, 119.3, 118.4, 117.8, 115.2, 114.8, 114.4, 110.1, 110.0, 106.0, 45.5. 45.4, 31.9, 30.3, 0.2, 29.6, 29.5, 29.5, 29.5, 29.4, 29.4, 29.3, 27.1, 22.7, 14.1 ppm. HRMS (ESI-Orbitrap) m/z: (M+H)⁺ calcd for C₄₃H₆₁N₂O₂: 637.473, found: 637.4736.

Synthesis of 2-cyano-3-(5-(5,10-didodecyl-5,10-dihydroindolo[3,2-b]indol-3yl)furan-2-yl)acrylic acid (IID-6): A mixture of aldehyde 12 (50 mg, 0.078 mmol), cyanoacetic acid (20 mg, 0.23 mmol), ammonium acetate (30 mg, 0.39 mmol) in acetic acid was heated at reflux overnight under argon atmosphere. After cooling the reaction mixture to room temperature, it was precipitated by pouring it into water. The precipitate was then washed with water and dried in a vacuum oven. The product IID-6 was obtained as a red solid (35 mg, 64%). m.p. 168-170 °C. ¹H NMR (500 MHz, $(CD_3)_2SO$: δ 8.56 (s, 1H), 8.05 (s, 1H), 7.90 (d, J = 7.5 Hz, 1H), 7.83 (d, J = 8.5 Hz, 1H), 7.75 (d, J = 9 Hz, 1H), 7.64 (d, J = 8 Hz, 1H), 7.56 (d, J = 3 Hz, 1H), 7.34 (d, J = 3.5 Hz, 1H), 7.28 (t, J = 7.5 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 4.60-4.58 (m, 4H), 1.88-1.82 (m, 4H), 1.25-1.05 (m, 36H), 0.82-0.79 (m, 6H) ppm. ¹³C NMR (125 MHz, (CD₃)₂SO): δ 164.8, 161.6, 147.2, 141.1, 140.9, 137.7, 126.6, 126.0, 122.5, 119.5, 119.2, 118.8, 118.3, 117.6, 115.6, 114.7, 114.4, 111.5, 110.9, 108.6, 45.2, 44.8, 31.7, 31.7, 30.1, 30.1, 29.4, 29.3, 29.2, 29.2, 29.1, 29.1, 29.0, 29.0, 26.5, 26.3, 22.5, 14.4. ppm. HRMS (ESI-Orbitrap) m/z: (M)⁺ calcd for C₄₆H₆₁N₃O₃: 703.4713, found: 703.4704.

Synthesis of 5-bromo-3-(2-nitrophenyl)-1H-indole (13): A solution of 5-bromoindole 1 (2 g, 10.2 mmol), 2-iodonitrobenzene 2 (3 g, 12.24 mmol), $Pd(OAc)_2$ (229 mg., 10 mol%), K_2CO_3 (2.1 g, 15.3 mmol) in dioxane was degassed and the reaction mixture was stirred at 110 °C for 72 hours. After the completion of the reaction, it was then cooled, passed through celite, and extracted using ethyl acetate. The organic layer was washed with water and dried over anhydrous sodium sulfate, filtered and the solvent was evaporated. The obtained residue was subjected to column chromatography to obtain

13 as a red solid (1.94 g, 60%). m.p. 100-102 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.44 (s, 1H), 7.87 (d, J = 8.5 Hz, 1H), 7.68-7.63 (m, 3H), 7.51-7.48 (m, 1H), 7.37-7.32 (m, 3H) ppm. ¹³C NMR (125 MHz, (CDCl₃): δ 150.0, 134.6, 132.5, 132.1, 128.3, 128.2, 127.7, 125.8, 124.5, 124.1, 121.6, 114.1, 113.0, 112.1 ppm. HRMS (ESI-Orbitrap) m/z: (M+H)⁺ calcd for C₁₄H₁₀BrN₂O₂: 316.9926, found: 316.9935.

Synthesis of 2-bromo-5,6-dihydroindolo[2,3-*b*]indole (14): To compound 13 (1.5 g, 4.72 mmol) in DMA, PPh₃ (3.09 g, 11.82 mmol) was added and the reaction mixture was stirred for 24 h at 165 °C. After completion of the reaction, the mixture was extracted with ethyl acetate and washed successively with water and brine. After removal of the solvent, column purification of the residue was performed on silica gel to isolate 14 as a colourless solid (737 mg, 2.59 mmol, 55%). m.p. > 240 °C. ¹H NMR (500 MHz, (CD₃)₂CO): δ 10.44 (s, 1H), 10.34 (s, 1H), 7.86 (s, 1H), 7.77 (d, J = 7.5 Hz, 1H), 7.31 (d, J = 8 Hz, 1H), 7.26 (d, J = 8.5 Hz, 1H), 7.06-7.02 (m, 2H), 6.97 (t, J = 8 Hz, 1H) ppm. ¹³C NMR (125 MHz, (CD₃)₂CO): δ 145.2, 139.2, 137.7, 124.2, 122.2, 121.6, 120.0, 119.9, 118.0, 113.0, 112.3, 111.6, 100.3 ppm. HRMS (ESI-Orbitrap) m/z: (M)⁺ calcd for C₁₄H₉BrN₂: 283.9949, found: 283.9954.

Synthesis of 2-bromo-5,6-didodecyl-5,6-dihydroindolo[2,3-b]indole (15): NaH (88 mg, 3.69 mmol) was added to a stirred solution of 14 (700 mg, 2.46 mmol) in dry DMF under a nitrogen atmosphere at 0 °C. The reaction mixture was warmed to room temperature and stirred for 30 min. The reaction mixture was cooled again to 0 °C, and 1-bromododecane (735 mg, 2.95 mmol) was added dropwise and stirred at room temperature for 8 h. Upon completion, the reaction mixture was quenched by slowly adding water and then extracted with EtOAc. The organic layer was washed successively with water and brine and then dried over anhydrous Na₂SO₄. After removal of the solvent, column purification of the residue was performed on silica gel to isolate alkylated product 15 as a colourless solid (1.4 g, 93%). m.p. 68-70 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.98 (s, 1H), 7.86 (d, J = 7 Hz, 1H), 7.38 (d, J = 8 Hz, 1H), 7.29-7.22 (m, 4H), 4.36-4.32 (m, 4H), 1.46-1.27 (m, 36H), 1.93-1.84 (m, 4H), 1.46-1.27 (m, 36H), 0.92-0.89 (m, 6H) ppm.13C NMR (125 MHz, (CDCl₃): δ 144.6, 139.6, 138.2, 123.6, 121.8, 121.7, 120.7, 120.3, 119.9, 118.3, 113.1, 110.5, 109.3, 100.4, 44.4, 44.2, 31.9, 30.4,

30.4, 29.6, 29.6, 29.5, 29.5, 29.4, 27.1, 27.0, 22.7, 14.1 ppm. HRMS (ESI-Orbitrap) m/z: (M)⁺ calcd for C₃₈H₅₇BrN₂: 620.3705, found: 620.3714.

Synthesis of 4-(5,6-didodecyl-5,6-dihydroindolo[2,3-b]indol-2-yl)benzaldehyde (16): A mixture of 15 (100 mg, 0.16 mmol.), 4-formylphenylboronic acid 7 (28 mg, 0.19 mmol), $Pd(PPh_3)_4$ (18 mg, 10 mol%), and K_2CO_3 (110 mg, 0.8 mmol) were weighed into a Schlenk tube and degassed for 10 minutes. Degassed THF and water were then added in a 3:1 ratio, and the reaction mixture was purged with argon and stirred at 70 °C for 24 h. After completion of the reaction, the solvent was evaporated under vacuum, and the residue obtained was purified by silica column chromatography (with mixtures of ethyl acetate in hexane as eluent) yielding the product 16 as a yellow solid (68 mg, 65%). m.p. 64-66 °C. ¹H NMR (500 MHz, CDCl₃): δ 10.0 (s, 1H), 8.06 (d, J = 1.5 Hz, 1H), 7.91 (d, J = 8 Hz, 2H), 7.86-7.83 (m, 3H), 7.41 (dd, J1 = 6.5 Hz, J2 = 2 Hz, 1H), 7.36 (d, J = 8.5 Hz, 1H), 7.31 (d, J = 8 Hz, 1H), 7.21-7.14 (m, 2H), 4.33-4.28 (m, 4H), 1.86-1.81 (m, 4H), 1.38-1.18 (m, 36H), 0.82-0.79 (m, 6H) ppm. ¹³C NMR (125 MHz, (CDCl₃): δ 192.2, 148.9, 144.7, 139.7, 139.6, 134.4, 131.8, 130.3, 127.8, 122.6, 121.9, 120.2, 119.8, 118.9, 118.3, 117.1, 109.6, 109.4, 101.1, 44.5, 44.3, 31.9, 30.5, 30.5, 29.6, 29.6, 29.5, 29.4, 29.4, 27.1, 22.7, 14.1 ppm. HRMS (ESI-Orbitrap) m/z: (M+H)⁺ calcd for C₄₅H₆₃N₂O: 647.4940, found: 647.4943.

Synthesis of 2-cyano-3-(4-(5,6-didodecyl-5,6-dihydroindolo[2,3-*b*]indol-2yl)phenyl)acrylic acid (IID-7): A mixture of aldehyde 16 (50 mg, 0.077 mmol), cyanoacetic acid (20 mg, 0.23 mmol), ammonium acetate (30 mg, 0.38 mmol) in acetic acid was heated at reflux overnight under argon atmosphere. After cooling to room temperature, it was precipitated by pouring it into water. The precipitate was then washed with water and dried in a vacuum oven. The product IID-7 was obtained as an orange solid (38 mg, 69% yield). m.p. 142-144 °C. ¹H NMR (500 MHz, (CD₃)₂CO): δ 8.25 (d, J = 10 Hz, 2H), 8.10 (d, J = 8 Hz, 2H), 7.94 (d, J = 8 Hz, 2H), 7.89 (d, J = 7 Hz, 1H), 7.53-7.48 (m, 2H), 7.40 (d, J = 8 Hz, 1H), 7.09-7.03 (m, 2H), 4.46-4.39 (m, 4H), 1.86-1.80 (m, 4H), 1.39-1.13 (m, 36H), 0.75-0,72 (m, 6H) ppm. ¹³C NMR (125 MHz, (CD₃)₂CO): δ 154.3, 148.1, 147.4, 144.8, 140.1, 139.8, 131.7, 131.0, 129.6, 127.4, 122.7, 121.9, 119.9, 119.7, 118.6, 118.2, 116.6, 110.2, 109.7, 101.0, 44.1, 44.0, 31.7, 30.3, 30.2, 26.6, 22.4, 13.4 ppm. HRMS (ESI-Orbitrap) m/z: (M+H)⁺ calcd for C₄₈H₆₄N₃O₂:714.4999, found: 714.5001.

Synthesis of 5-(5,6-didodecyl-5,6-dihydroindolo[2,3-b]indol-2-yl)thiophene-2carbaldehyde (17): A mixture of 15 (100 mg, 0.16 mmol.), 5-formyl-2thiopheneboronic acid 8 (30 mg, 0.19 mmol), Pd(PPh₃)₄ (18 mg, 10 mol%), K₂CO₃ (110 mg, 0.8 mmol) were weighed into a Schlenk tube and degassed for 10 minutes. Degassed THF and water were then added in a 3:1 ratio, and the reaction mixture was purged with argon and stirred at 70 °C for 24 h. After completion of the reaction, the solvent was evaporated under vacuum, and the residue obtained by silica column chromatography (with mixtures of ethyl acetate in hexane as eluent) yielded product **17** as a yellow solid (58 mg, 55%). m.p. 88-90 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.82 (s, 1H), 8.09 (s, 1H), 7.85 (d, J = 7.5 Hz, 1H), 7.70 (d, J = 3.5 Hz, 1H), 7.45 (d, J = 7.5 Hz, 1H), 7.40 (d, J = 3.5 Hz, 1H), 7.32-7.30 (m, 2H), 7.23-7.15 (m, 2H), 4.32-4.28 (m, 4H), 1.86-1.80 (m, 4H), 1.39-1.17 (m, 36 H), 0.82-0.79 (m, 6H) ppm. ¹³C NMR (125 MHz, (CDCl₃): δ 182.7, 157.2, 144.8, 141.2, 140.2, 139.6, 137.9, 125.2, 123.0, 122.5, 121.7, 120.3, 120.0, 118.4, 118.2, 116.2, 109.7, 109.4, 101.0, 44.5, 44.3, 31.9, 30.5, 29.6, 29.6, 29.5, 29.4, 29.3, 27.1, 22.7, 14.1 ppm. HRMS (ESI-Orbitrap) m/z: (M+H)⁺ calcd for C₄₃H₆₁N₂OS: 653.4505, found: 653.4506.

Synthesis of 2-cyano-3-(5-(5,6-didodecyl-5,6-dihydroindolo[2,3-*b*]indol-2yl)thiophen-2-yl)acrylic acid (IID-8): A mixture of aldehyde **17** (50 mg, 0.076 mmol), cyanoacetic acid (20 mg, 0.23 mmol), ammonium acetate (30 mg, 0.38 mmol) in acetic acid was heated at reflux overnight under argon atmosphere. After cooling the reaction mixture to room temperature, it was precipitated by pouring it into water. The precipitate was then washed with water and dried in a vacuum oven. The product **IID-8** was obtained as a red solid (39 mg, 71%). m.p. 154-156 °C. ¹H NMR (500 MHz, (CD₃)₂CO): δ 8.32 (s, 1H), 8.26 (s, 1H), 7.88-7.85 (m, 2H), 7.65 (d, J = 4 Hz, 1H), 7.52-7.47 (m, 2H), 7.40 (d, J = 7.5 Hz, 1H), 7.10-7.04 (m, 2H), 4.45-4.38 (m, 4H), 1.86-1.78 (m, 4H), 1.39-1.13 (m, 36H), 0.75-0.72 (m, 6H) ppm. ¹³C NMR (125 MHz, (CD₃)₂CO): δ 157.1, 146.7, 145.0, 140.8, 140.7, 140.0, 133.7, 124.9, 123.5, 122.5, 121.7, 120.1, 120.0, 118.2, 118.2, 115.8, 110.5, 109.8, 100.8, 44.1, 43.9, 31.7, 30.3, 30.2, 26.7, 22.4, 13.4 ppm. HRMS (ESI-Orbitrap) m/z: (M+H)⁺ calcd for C₄₆H₆₂BrN₃O₂S: 720.4563, found: 720.4581.

Synthesis of 5-(5,6-didodecyl-5,6-dihydroindolo[2,3-b]indol-2-yl)furan-2carbaldehyde (18): A mixture of 15 (100 mg, 0.16 mmol.), 5-formyl-2-furanylboronic acid **9** (22 mg, 0.19 mmol), Pd(PPh₃)₄ (18 mg, 10 mol%), and K₂CO₃ (110 mg, 0.8 mmol) were weighed into a Schlenk tube and degassed for 10 minutes. Degassed THF and water were then added in a 3:1 ratio, and the reaction mixture was purged with argon and stirred at 70 °C for 24 h. After completion of the reaction, the solvent was evaporated under vacuum, and the residue obtained was purified by silica column chromatography (with mixtures of ethyl acetate in hexane as eluent) yielding product **18** as a yellow solid (41 mg, 40%). m.p. 74-76 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.58 (s, 1H), 8.26 (s, 1H), 7.90 (d, J = 7.5 Hz, 1H), 7.61 (d, J = 8.5 Hz, 1H), 7.33-7.30 (m, 3H), 7.23-7.15 (m, 2H), 6.81 (d, J = 3 Hz, 1H), 4.30 (q, J = 8.5 Hz, 4H), 1.84-1.81 (m, 4H), 1.38-1.17 (m, 36H), 0.80 (t, J = 7 Hz, 6H) ppm. ¹³C NMR (125 MHz, (CDCl₃): δ 176.9, 161.8, 151.6, 144.7, 140.3, 139.6, 122.2, 121.7, 121.1, 120.4, 120.0, 118.6, 117.3, 115.5, 109.5, 109.4, 106.3, 101.2, 44.5, 44.3, 31.9, 30.5, 29.6, 29.6, 29.5, 29.4, 29.3, 27.1, 27.1, 22.7, 14.1 ppm. HRMS (ESI-Orbitrap) m/z: $(M+H)^+$ calcd for $C_{43}H_{61}N_2O_2$: 637.4728, found: 637.4723.

Synthesis of (2-cyano-3-(5-(5,6-didodecyl-5,6-dihydroindolo[2,3-*b*]indol-2-yl)furan-2-yl)acrylic acid (IID-9): A mixture of aldehyde 18 (50 mg, 0.078 mmol), cyanoacetic acid (20 mg, 0.23 mmol), ammonium acetate (30 mg, 0.39 mmol) in acetic acid was heated at reflux overnight under argon atmosphere. After cooling the reaction mixture to room temperature, it was precipitated by pouring it into water. The precipitate was then washed with water and dried in a vacuum oven. The product **IID-9** was obtained as a red solid (41 mg, 74%). m.p. 190-192 °C. ¹H NMR (500 MHz, (CD₃)₂CO): δ 8.52 (s, 1H), 7.94 (s, 1H), 7.86 (d, J = 7.5 Hz, 1H), 7.70 (d, J = 8.5 Hz, 1H), 7.52 (d, J = 8.5 Hz, 1H), 7.43-7.40 (m, 2H), 7.15 (d, J = 3 Hz, 1H), 7.10-7.04 (m, 2H), 4.46-4.39 (m, 4H), 1.86-1.80 (m, 4H), 1.38-1.13 (m, 36H), 0.74-0.72 (m, 6H) ppm. ¹³C NMR (125 MHz, (CD₃)₂CO): δ 163.6, 162.2, 147.1, 144.8, 140.6, 140.0, 137.5, 122.2, 121.7, 120.9, 120.2, 119.9, 118.2, 117.1, 116.5, 115.6, 110.3, 109.8, 107.8, 101.0, 95.3, 44.1, 43.9, 31.8, 30.3, 30.3, 26.7, 22.4, 13.5 ppm. HRMS (ESI-Orbitrap) m/z: $(M+H)^+$ calcd for $C_{46}H_{62}N_3O_3$: 704.4791, found: 704.4816.

Synthesis of 9-bromo-6-dodecyl-6H-benzo[4,5]thieno[2,3-b]indole (21): 5-bromo-1dodecyl-1H-indole **19** (2 g, 5.49 mmol), cyclohexanone **20** (568 µL, 5.49 mmol), iodine (1.39 g, 5.49 mmol) and sulfur powder (702 mg, 21.96 mmol) were weighed into a reaction tube and NMP was added to this. The sealed reaction vessel was stirred under an air atmosphere at 150 °C for 16 h. After cooling to room temperature, the reaction mixture was diluted with ethyl acetate and washed successively with water and saturated brine. The combined organic layers were dried over anhydrous sodium sulfate, and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel to yield the desired product 21 as a colourless viscous liquid (1.26 g, 49%). Rf: 0.4 (hexane). ¹H NMR (500 MHz, CDCl₃): δ 8.05 (s, 1H), 7.96 (d, J = 7.5 Hz, 1H), 7.73 (d, J = 8 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H), 7.31-7.30 (m, 1H), 7.22-7.20 (m, 2H), 4.15 (t, J = 7 Hz, 2H), 1.88-1.83(m, 2H), 1.25-1.15 (m, 18H), 0.80 (t, J = 6 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ 143.8, 139.9, 138.0, 132.7, 125.3, 124.1, 124.0, 123.7, 122.4, 121.5, 120.6, 116.2, 113.1, 110.8, 46.5, 31.9, 29.6, 29.5, 29.4, 29.3, 29.2, 29.0, 27.0, 22.7, 14.1 ppm. HRMS (ESI) m/z: (M)⁺ calcd for C₂₆H₃₂BrNS 469.1439, found 469.1443.

Synthesis of 4-(6-dodecyl-6H-benzo[4,5]thieno[2,3-*b***]indol-9-yl)benzaldehyde (22): A** mixture of benzothienoindole **21** (100 mg, 0.21 mmol), 4-formylphenylboronic acid **7** (94 mg, 0.63 mmol), Pd(PPh₃)₄ (24 mg, 10 mol%), and K₂CO₃ (145 mg, 1.05 mmol) were weighed into a schlenk tube and degassed for 10 minutes. Degassed THF and water were then added in a 3:1 ratio, and the reaction mixture was purged with argon and stirred at 70 °C for 24 h. After completion of the reaction, the solvent was evaporated under vacuum, and the residue obtained was purified by silica column chromatography yielding the product as a yellow solid (80 mg, 77%). m.p. 82-84 °C. ¹H NMR (500 MHz, CDCl₃): δ 10.08 (S, 1H), 8.27 (S, 1H), 8.15 (d, J = 8 Hz, 1H), 8.00 (d, J = 8 Hz, 2H), 7.90 (d, J = 7.5 Hz, 2H), 7.84 (d, J = 8 Hz, 1H), 7.59 (d, J = 7.5 Hz, 1H), 7.52-7.49 (m, 2H), 7.30-7.27 (m, 1H), 4.49 (t, = 7 Hz, 2H), 2.00-1.97 (m, 2H), 1.41-1.23 (m, 18H), 0.87 (t, J = 7 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ 192.1, 148.5, 143,7, 141.3, 138.2, 134.6, 133.0, 131.8, 130.4, 127.9, 125.3, 123.7, 123.2, 122.3, 121.0, 120.6, 117.9, 117.1,

110.0, 46.6, 31.9, 29.6, 29.5, 29.4, 29.3, 29.2, 27.0, 22.7, 14.1 ppm. HRMS (ESI) m/z: (M+H)⁺ calcd for C₃₃H₃₈NOS 496.2669, found 496.2681.

Synthesis 2-cyano-3-(4-(6-dodecyl-6H-benzo[4,5]thieno[2,3-*b*]indol-9yl)phenyl)acrylic acid (BID-4): A mixture of aldehyde 22 (50 mg, 0.10 mmol), cyanoacetic acid (25 mg, 0.30 mmol) ammonium acetate (65 mg, 0.50 mmol) in acetic acid was heated at reflux overnight under argon atmosphere. After cooling the reaction mixture to room temperature, it was precipitated by pouring it into water. The precipitate was then washed with water and dried in a vacuum oven. The product **BID-4** was obtained as an orange solid (49 mg, 88%). m.p. 157-160 °C. ¹H NMR (500 MHz, (CD₃)₂CO): δ 8.46 (S, 1H), 8.26-8.26 (m, 2H), 8.12 (d, J = 8 Hz, 2 H), 7.98 (d, J = 8 Hz, 2 H), 7.83 (d, J = 8 Hz, 1H), 7.64 (s, 2 H), 7.39 (t, J = 7 Hz, 1 H), 7.18 (t, J = 7.5 Hz, 1 H), 4.32 (t, J = 7 Hz, 2H), 1.90-1.87(m, 2H), 1.31-1.23 (m, 4H), 1.15-1.10 (m, 14 H), 0.72 (t, J = 7 Hz, 3H) ppm. ¹³C NMR (125 MHz, (CD₃)₂CO): δ 163.0, 154.1, 146.7, 143.4, 141.7, 138.2, 133.0, 131.7, 131.3, 130.1, 127.7, 125.3, 123.8, 123.1, 122.4, 120.9, 117.6, 117.1, 115.9, 110.6, 46.1, 31.7, 26.6, 22.4, 13.5 ppm. HRMS (ESI) m/z: (M+H)⁺ calcd for C₃₆H₃₉N₂O₂S 563.2727, found 563.2736.

Synthesis of 5-(6-dodecyl-6H-benzo[4,5]thieno[2,3-b]indol-9-yl)thiophene-2carbaldehyde (23): Benzothienoindole 21 (94 mg, 0.63 mmol.), (5-formylthiophene-2yl)boronic acid 8 (98 mg, 0.63 mmol), Pd(PPh₃)₄ (24 mg, 10 mol%), and K₂CO₃ (145 mg, 1.05 mmol.) were weighed in a Schlenk tube and degassed for 10 min. Degassed THF and water were then added in a 3:1 ratio, and the reaction mixture was purged with argon and stirred at 70 °C for 24 h. After completion of the reaction, the solvent was evaporated under vacuum, and the residue obtained was purified by silica column chromatography yielding product **23** as a yellow solid (74 mg, 70%). m.p.82-84 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.90 (S, 1H), 8.31 (S, 1H), 8.13 (d, J = 7.5 Hz, 1H), 7.83 (d, J = 8 Hz, 1H), 7.79 (d, J = 4 Hz, 1H), 7.54-7.49(m, 2H), 7.46 (d, J = 8.5 Hz, 1H), 7.30 (t, J = 7.5 Hz, 1H), 4.28 (t, J= 7 Hz, 2H), 1.98-1.95 (m, 2 H), 1.39-1.23 (m, 18 H), 0.87(t, J = 6 Hz, 3 H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 182.6, 156.4, 141.7, 141.5, 138.2, 137.9, 132.8, 125.4, 124.7, 123.8, 123.3, 123.1, 122.6, 122.5, 120.7, 120.3, 117.1, 110.1, 46.6, 31.9, 29.6, 29.5, 29.4, 29.3, 29.2, 29.0, 27.0, 22.7, 14.1 ppm; HRMS (ESI) m/z: (M+H)⁺ calcd for C₃₁H₃₆NOS₂ 563.2727, found 563.2736.

2-cyano-3-(5-(6-dodecyl-6H-benzo[4,5]thieno[2,3-b]indol-9-Synthesis of yl)thiophen-2-yl)acrylic acid (BID-5): A mixture of aldehyde 23 (50 mg, 0.10 mmol), cyanoacetic acid (25 mg, 0.30 mmol) ammonium acetate (65 mg, 0.50 mmol) in acetic acid was heated at reflux overnight under argon atmosphere. After cooling the reaction mixture to room temperature, it was precipitated by pouring it into water. The precipitate was then washed with water and dried in a vacuum oven. The product BID-5 was obtained as a red solid (44 mg, 80%). m.p. 210-212 °C. ¹H NMR (500 MHz, (CD₃)₂CO): δ 8.49 (S, 1H), 8.34 (S, 1H), 8.22 (d, J = 8 Hz, 1H), 7.91(d, J = 4 Hz, 1 H), 7.84(d, J = 8 Hz, 1 H), 7.74 (d, J = 4 Hz, 1 H), 7.64 (s, 2H), 7.41 (t, J = 7.5 Hz, 1 H), 7.20 (t, J = 7.5 Hz, 1 H), 4.33(t, J = 7 Hz, 2 H), 1.88-1.87 (m, 2H), 1.31-1.10 (m, 18 H), 0.72 (t, J = 7 Hz, 3 H) ppm. ¹³C NMR (125 MHz, (CD₃)₂CO): δ 163.3, 156.0, 146.9, 143.8, 142.3, 141.0, $138.3,\ 134.1,\ 132.7,\ 125.4,\ 125.1,\ 124.1,\ 123.8,\ 122.9,\ 122.6,\ 120.9,\ 120.4,\ 117.0,$ 116.8, 116.1, 111.0, 97.1, 46.1, 31.7, 26.6, 22.4, 13.5 ppm. HRMS (ESI) m/z: (M+H)⁺ calcd for C₃₄H₃₇N₂O₂S₂ 569.2291, found 569.2300.

Synthesis of 5-(6-dodecyl-6H-benzo[4,5]thieno[2,3-b]indol-9-yl)furan-2carbaldehyde (24): Benzothienoindole 21 (100 mg, 0.21 mmol.), (5-formylfuran-2yl)boronic acid 9 (88 mg, 0.63 mmol) Pd(PPh₃)₄ (24 mg, 10 mol%), and K₂CO₃ (145 mg, 1.05 mmol.) were weighed in a Schlenk tube and degassed for 10 min. Degassed THF and water were then added in a 3:1 ratio, and the reaction mixture was purged with argon and stirred at 70 °C for 24 h. After completion of the reaction, the solvent was evaporated under vacuum, and the residue obtained was purified by silica column chromatography yielding the product 24 as a yellow-coloured viscous liquid (61 mg, 60%). Rf: 0.44 (20 % ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃): δ 9.59 (s, 1H), 8.40 (s, 1H), 8.12 (d, J = 8 Hz, 1H), 7.75 (d, J = 8 Hz, 1 H), 7.69-7.67 (m, 1H), 7.45 (t, J = 7 Hz, 1H), 7.38-7.37 (m, 1H), 7.30 (d, J = 4 Hz, 1 H), 7.22 (t, J = 7 Hz, 1 H), 6.81(d, 3.5, J = Hz,1H), 4.18 (t, J = 7 Hz, 2 H), 1.91-1.86 (m, 2H), 1.32-1.26 (m, 4 H), 1.18-1.15 (m, 14 H), 0.79 (t, J = 7.5 Hz, 3H) ppm. 13 C NMR (125 MHz, CDCl₃): δ 176.8, 161.4, 151.7, 143.9, 141.8, 138.2, 132.8, 125.4, 123.7, 122.8, 122.5, 121.1, 120.9, 119.2, 117.3, 116.2, 109.9, 106.6, 46.6. 31.9, 29.6, 29.5, 29.4, 29.3, 29.2, 29.0, 27.0, 22.7, 14.1 ppm; HRMS (ESI) m/z: $(M+H)^+$ calcd for C₃₄H₃₇N₂O₃S 553.2539, found 553.2519

Synthesis of 2-cyano-3-(5-(6-dodecyl-6H-benzo[4,5]thieno[2,3-*b*]indol-9-yl)furan-2yl) acrylic acid (BID-6): A mixture of aldehyde 24 (50 mg, 0.10 mmol), cyanoacetic acid (25 mg, 0.30 mmol) ammonium acetate (65 mg, 0.50 mmol) in acetic acid was heated at reflux overnight under argon atmosphere. After cooling the reaction mixture to room temperature, it was precipitated by pouring it into water. The precipitate was then washed with water and dried in a vacuum oven. The product **BID-6** was obtained as a red solid (41 mg,75%). m.p. 173-175 °C. ¹H NMR (500 MHz, (CD₃)₂CO): δ 8.72 (S, 1H), 8.24 (d, J = 7.5 Hz, 1H), 7.97(s, 1H), 7.82(t, J = 9 Hz, 2H), 7.62 (d, J = 9 Hz, 1H), 7.42-7.38 (m, 2H), 7.21-7.18 (m, 2H), 1.29-1.22 (m, 6.5 Hz, 4H), 1,15-1.09 (m, 14H), 0.72 (t, J = 6.5 Hz, 3H) ppm. ¹³C NMR (125 MHz, (CD₃)₂CO): δ 161.4, 147.4, 143.7, 142.0, 138.3, 137.6, 132.7, 125.5, 123.7, 122.7, 122.6, 121.2, 121.0, 119.1, 117.3, 116.5, 110.7, 108.1, 46.2, 31.5, 26.6, 22.4, 13.8 ppm; HRMS (ESI) m/z: (M)⁺ calcd for C₃₄H₃₆N₂O₃S 552.2446, found 552.2373.

2.2 Device Fabrication

The fabrication and characterization procedures for the devices are detailed elsewhere.¹⁸ The DSCs were fabricated by coating the photoanode with a 16µm thick layer of titanium dioxide, consisting of a 12µm transparent layer and a 4µm scattering layer, and subsequently immersing the electrodes in 0.2 mM dye solutions. A 25µm surlyn spacer was used to assemble the photoanode with a predrilled platinum-coated counter electrode. The iodide/triiodide electrolyte, composed of 0.5M BMII, 0.1M LiI, 0.03M I₂, and 0.5M TBP, is used as the redox mediator in the fabricated DSCs.

Current density-voltage (J-V) measurements were done using a Class AAA solar simulator (Newport, Sol3A-94023) under one sun illumination (AM 1.5G 100 mWcm⁻²). The incident photon-to-current conversion efficiency (IPCE) was measured using a 350W xenon lamp with a monochromator (Newport). Charge Extraction (CE) measurements were done using an Autolab PGSTAT302N and toolbox setup (Dyenamo A.B., Sweden). Transient photovoltage and photocurrent decay were also measured using the toolbox (Dyenamo A.B., Sweden). The open-circuit photovoltage decay (OCVD) was measured using an Autolab PGSTAT302N workstation.

 ^1H NMR (500 MHz, CDCl₃) & $^{13}\text{C}\{^1\text{H}\}$ (125 MHz, CDCl₃) Spectra of ${\bf 3}$

¹H NMR (500 MHz, (CD₃)₂O) & ¹³C{¹H} (125 MHz, (CD₃)₂O) Spectra of 5

¹H NMR (500 MHz, CDCl₃) & ¹³C{¹H} (125 MHz, CDCl₃) Spectra of 6

 ^1H NMR (500 MHz, CDCl₃) & $^{13}\text{C}\{^1\text{H}\}$ (125 MHz, CDCl₃) Spectra of 7

 ^1H NMR (500 MHz, CDCl₃) & $^{13}\text{C}\{^1\text{H}\}$ (125 MHz, CDCl₃) Spectra of $\boldsymbol{8}$

¹H NMR (500 MHz, (CD₃)₂O) & ¹³C{¹H} (125 MHz, (CD₃)₂O) Spectra of **IID-5**

^1H NMR (500 MHz, CDCl₃) & $^{13}\text{C}\{^1\text{H}\}$ (125 MHz, CDCl₃) Spectra of 12

1 H NMR (500 MHz, CDCl₃) & 13 C{ 1 H} (125 MHz, CDCl₃) Spectra of **14**

 ^1H NMR (500 MHz, CDCl₃) & $^{13}\text{C}\{^1\text{H}\}$ (125 MHz, CDCl₃) Spectra of **15**

¹H NMR (500 MHz, (CD₃)₂CO) & ¹³C{¹H} (125 MHz, (CD₃)₂O) Spectra of **IID-7**

¹H NMR (500 MHz, CDCl₃) & ¹³C{¹H} (125 MHz, CDCl₃) Spectra of 16

¹H NMR (500 MHz, (CD₃)₂CO) & ¹³C{¹H} (125 MHz, (CD₃)₂O) Spectra of **IID-8**

^1H NMR (500 MHz, CDCl₃) & $^{13}\text{C}\{^1\text{H}\}$ (125 MHz, CDCl₃) Spectra of 17

¹H NMR (500 MHz, (CD₃)₂CO) & ¹³C{¹H} (125 MHz, (CD₃)₂O) Spectra of **IID-9**

¹H NMR (500 MHz, CDCl₃) & ¹³C{¹H} (125 MHz, CDCl₃) Spectra of **19**

^1H NMR (500 MHz, CDCl₃) & $^{13}\text{C}\{^1\text{H}\}$ (125 MHz, CDCl₃) Spectra of **20**

 1 H NMR (500 MHz, CDCl₃) & 13 C{ 1 H} (125 MHz, CDCl₃) Spectra of **21**

^1H NMR (500 MHz, CDCl₃) & $^{13}\text{C}\{^1\text{H}\}$ (125 MHz, CDCl₃) Spectra of **22**

¹H NMR (500 MHz, (CD₃)₂CO) & ¹³C{¹H} (125 MHz, (CD₃)₂O) Spectra of **BID-6**

Figure S1. Charge extraction plot for devices fabricated with IID-7, IID-8, and IID-9 as sensitizers.

Figure S2. Charge extraction plot for devices fabricated with BID-4, BID-5, and BID-6 as sensitizers.

Figure S3. Transport time (τ_t) measured using transient photocurrent decay for DSSCs with **BID-4**, **BID-5**, and **BID-6** sensitizers.