Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting Information

Heterogeneous S-NiFe₂O₄@NiSe₂ nanospheres for oxygen evolution

reaction with long-term stability

Fangyuan Fan, Chunlin Teng, Rongjin Zhu, Lina Zhu, Lingfei Xu and Yeshuang Du*

Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and

Chemical Engineering, Hubei Normal University, Huangshi 435002, China.

Figure S1 XRD pattern of S-NiFe2O4@NiSe2/NF electrocatalyst after OER stability test.

Figure S2 The N_2 adsorption/desorption isotherm (a) and pore-size distribution (b) of S-NiFe₂O₄@NiSe₂ electrocatalyst.

Figure S3 SEM images of S-NiFe2O4@NiSe2 electrocatalyst after OER stability test.

Figure S4 EDS `spectrum of S-NiFe₂O₄@NiSe₂ electrocatalyst.

Figure S5 XPS spectra of Ni 2p (a) and Fe 2p (b) of S-NiFe₂O₄@NiSe₂ and NiFe₂O₄@NiSe₂.

Figure S6 XRD patterns of S-NiFe₂O₄ and S-NiSe₂ electrocatalysts.

Figure S7 Cyclic voltammetry curves of S-NiFe₂O₄@NiSe₂, S-NiFe₂O₄, S-NiSe₂, and NiFe₂O₄@NiSe₂ electrocatalysts with the scan rate of 150-190 mV s⁻¹ in non-Faradic region.

Figure S8 The V-t curve of S-NiFe₂O₄@NiSe₂ for OER at 50 mA cm⁻².

Figure S9 High resolution XPS spectra of Ni 2p (a), Fe 2p (b), O 1s (c), S 2p (d) and Se 3d in S-NiFe₂O₄@NiSe₂ electrocatalyst after OER stability test.

i

To calculate the turnover rate (TOF), we used the formula reported previously. $\text{TOF} = \overline{4nF}$, where *i* (A) is the current at a particular overpotential, F is the Faraday constant (96485 C/mol) and n is the number of moles of the active sites. The unit of TOF is s⁻¹.

Based on the previous calculations, we used 2×10^{15} /cm² for the flat standard electrode. Thus, the number of moles of surface active sites for the electrocatalyst is estimated to be:

$$ECSA = C_{dl}/Cs$$
 (Cs = 40 μ F cm⁻²)

ECSA (S-NiFe₂O₄@NiSe₂) = 3.64 mF cm⁻²/40 μ F cm⁻² ×1cm² = 91 cm²

ECSA (S-NiFe₂O₄) =
$$3.08 \text{ mF cm}^{-2}/40 \mu \text{F cm}^{-2} \times 1 \text{ cm}^{-2} = 77 \text{ cm}^{-2}$$

ECSA (S-NiSe₂) = $3.14 \text{ mF cm}^{-2}/40 \mu \text{F cm}^{-2} \times 1 \text{ cm}^{2} = 78.5 \text{ cm}^{2}$

ECSA (NiFe₂O₄@NiSe₂) = 1.33 mF cm⁻²/40 μ F cm⁻² ×1cm²= 33.25 cm²

n (S-NiFe₂O₄@NiSe₂) = 91 cm² × 2 × 10¹⁵/cm² ÷(6.022×10²³)= 3.02×10^{-7} mol

n (S-NiFe₂O₄) = 77 cm² × 2 × 10¹⁵/cm² ÷(6.022×10²³)= 2.56×10^{-7} mol

n (S-NiSe₂) = 78.5 cm² × 2 × 10¹⁵/cm² ÷(6.022×10²³)= 2.61 × 10⁻⁷ mol

n (NiFe₂O₄@NiSe₂) = 33.25 cm² × 2 × 10¹⁵/cm² ÷(6.022×10²³)= 1.1×10^{-7} mol

Therefore, the TOF per active site is calculated as follows and i is the current (A):

TOF $(S-NiFe_2O_4@NiSe_2) = i/(4 \times 3.02 \times 10^{-7} \times 96485) = 8.58 i$

TOF (S-NiFe₂O₄) = $i/(4 \times 2.56 \times 10^{-7} \times 96485) = 10.12 i$

TOF (S-NiSe₂) = $i/(4 \times 2.61 \times 10^{-7} \times 96485)$ =9.93 i

TOF (NiFe₂O₄@NiSe₂) = $i/(4 \times 1.1 \times 10^{-7} \times 96485) = 23.56 i$

At the potential of 1.5 V (vs RHE), the TOF values of S-NiFe₂O₄@NiSe₂, S-NiFe₂O₄, S-NiSe₂ and NiFe₂O₄@NiSe₂ are 0.4314 s⁻¹, 0.0062 s⁻¹, 0.005 s⁻¹, and 0.401 s⁻¹, respectively.

Electrocatalyst	j (mA cm ⁻²)	Overpotential (mV)	Reference	TOF
S-NiFe ₂ O ₄ -NiSe ₂	10	190	This work	0.4314 s ⁻¹ (1.5V)
(a-CoSe/Ti)	10	292	S1	-
Co _{0.85} Se	10	324	S2	0.0012 s ⁻¹ (300 mV)
(NiCo _{0.85})Se	10	255	S2	0.003 s ⁻¹ (300 mV)
Co _{0.13} Ni _{0.87} Se ₂ /Ti	100	320	S 3	-
NiSe ₂ /Ti	100	350	S 3	-
NiSe ₂	10	250	S4	-
Ni ₃ Se ₂ /Cu foam	50	340	S5	-
Fe-doped NiSe	100	264	S6	-
MnSe@MWCN T	10	290	S7	-
P-Ni _{0.75} Fe _{0.25} Se ₂	10	185	S8	0.18 s ⁻¹ (500 mV)
NiSe@NiOOH/ NF	50	332	S 9	-
$Cr_xNi_{1-x}Se_2$	10	272	S10	5.03×10 ⁻⁴ s ⁻¹ (300 mV)
NiFeCoSe/SSM	20	228	S11	-
FeSe/Co ₂ P/NF	10	235	S12	0.024 s ⁻¹ (1.53V)
NiFeV LDHs	10	192	S13	0.04 s ⁻¹ (1.48V)
Ni ₃ Fe _{0.9} Cr _{0.1} /CA CC	10	239	S14	-
NC- NiFeO _x @NiFe-P	10	285	S15	-
Co-Fe Selenide	10	270	S16	-
CoNi ₂ Se ₄	10	160	S17	-
NiFe-Se/CFP	10	281	S18	-

Table S1 OER performance comparisonof different non-noble based electrocatalysts.

[S1] T. Liu, Q. Liu, A. M. Asiri, Y. Luo, and X. Sun, Chem. Commun., 2015, 51, 16683-16686.

- [S2] C. Xia, Q. Jiang, C. Zhao, M.N. Hedhili, Adv. Mater., 2016, 28, 77-85.
- [S3] T. Liu, A.M Asiri, and X. Sun, Nanoscale, 2016, 8, 3911-3915.

[S4] I. H. Kwak, H. S. Im, D. M. Jang, Y. W. Kim, K. Park, Y. R. Lim, E. H. Cha, and J. Park, ACS Appl. Mater. Interfaces, 2016, 8, 5327–5334.

[S5] J. Shi, J. Hu, Y. Luo, X. Sun, A.M. Asiri, Catal. Sci. Technol., 2015, 5, 4954-4958.

[S6] Tang C, Asiri A M, Sun X. Chem. Commun., 2016, 52(24): 4529-4532.

[S7] H. Singh, M. Marley-Hines, S. Chakravarty and M. Nath, J. Mater. Chem. A, 2022, 10, 6772-6784

[S8] Y. Huang, L.-W. Jiang, B.-Y. Shi, K. M. Ryan, J.-J. Wang, Adv. Sci., 2021, 8, 2101775.

[S9] X. Li, G. Q. Han, Y. R. Liu, B. Dong, W. H. Hu, X. Shang, Y.M. Chai, C. G. Liu, ACS Appl. Mater. Interfaces, 2016, 8, 31, 20057-20066.

[S10] H. Fan, D. Jiao, J. Fan, D. Wang, B. Zaman, W. Zhang, L. Zhang, W. Zheng, X. Cui, Nano Res., 2024, 17, 1199-1208.

[S11] J. Zhang, S. Zhang, Z. Zhang, J. Wang, Z. Zhang, G. Cheng, J. Alloy Compd., 2023, 939, 168753.

[S12] S. Liu, Y. Xing, Z. Zhou, Y. Yang, Y. Li, X. Xiao and C. Wang. J. Mater. Chem. A, 2023,11, 8330-8341

[S13] P. Li, X. Duan, Y. Kuang, Y. Li, G. Zhang, W. Liu, X. Sun, Adv. Energy Mater., 2018, 8, 1703341.

[S14] J. Zheng, J. Zhang, L. Zhang, W. Zhang, X. Wang, Z. Cui, H. Song, Z. Liang, L. Du, ACS Appl. Mater. Interfaces, 2022, 14, 19524-19533.

[S15] Q. Hu, X. F. Liu, C. Y. Tang, L. D. Fan, X. Y. Chai, Q. L. Zhang, J. H. Liu, C. X. He, Sustain. Energ. Fuels, 2018, 2, 1085-1092.

[S16] F. O. Boakye, Y. Li, K. A. Owusu, I. S. Amiinu, Y. Cheng, H. Zhang, *Mater. Chem. Phys.*, 2022, 275, 125201

[S17] B. G. Amin, A. T. Swesi, J. Masud, M. Nath, Chem. Commun., 2017, 53, 5412-5415.

[S18] Y. Guo, C. Zhang, J. Zhang, K. Dastafkan, K. Wang, C. Zhao, Z. Shi, ACS Sustainable Chem. Eng., 2021, 9, 5, 2047 - 2056.