Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Electroanalytical approach for the detection of 2,4-diaminotoluene based on electrochemically reduced graphene oxide-carboxylic single walled carbon nanotubes

Yujie Wang, Keyu Chen, Guodong Cheng, Sitian Du, Fei Wang*

School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, 450007, P R China

*Corresponding authors. E-mail: wf2003@haue.edu.cn (Prof. Fei Wang)

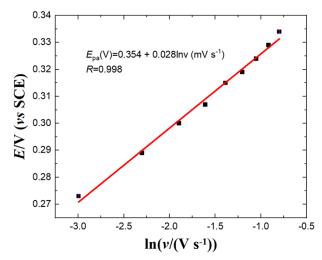
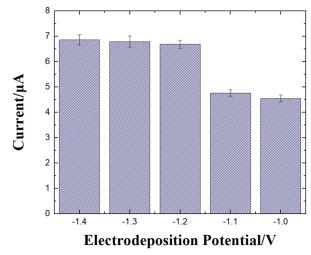
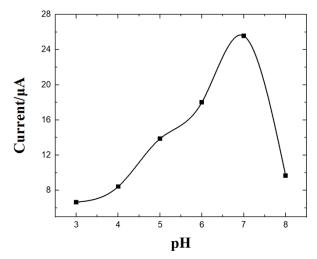



Fig.S1 Linear regression of anodic peak potential (E_{pa}) versus natural logarithm of the scan rate (lnv)



CSWCNTs amount (mg)

Fig.S2 Influence of CSWCNTs addition on the electrochemical response of 2.0×10^{-5} mol L⁻¹ 2,4-DAT at the ErGO-CSWCNTs/GCE

Fig.S3 Influence of electrodeposition potential (E_r) on the electrochemical response of 2.0 × 10⁻⁵ mol L⁻¹ 2,4-DAT at the ErGO-*C*SWCNTs/GCE

Fig.S4 Influence of pH on the anodic peak current (solution containing 2.0×10^{-5} mol L⁻¹ 2,4-DAT) at the ErGO-*C*SWCNTs/GCE

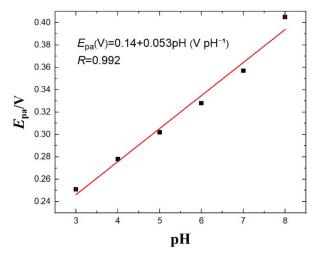


Fig.S5 Linear regression of anodic peak potential (E_{pa}) versus pH