Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supplementary materials

Magnetic properties of 3D lanthanide complexes with 1,3-bis(diphenylphosphoryl)-2-oxapropane: The slow magnetic relaxation of Yb(III) compounds

Serafima S. Slobodskaia^{a,*}, Nikolay N. Efimov^b, Alina S. Galkina^b, Galina S. Tsebrikova^a, Andrey B. Ilyukhin^b, Irina S. Ivanova^b, Vladimir E. Baulin^c, Aslan Yu. Tsivadze^a

 ^a Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31/4, Moscow, 119071 Russia
 ^b Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119991 Russia
 ^c Institute of Physiologically Active Compounds, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnyi proezd 1, Moscow region, Chernogolovka, 142432 Russia
 * e-mail: SlobodskayaSi@yandex.ru

Compound	Type of the result	C, %	Н, %	N, %
[Dy ₂ L ₃ (NO ₃) ₆] _n ·8.1nH ₂ O (1)	Exp., (%):	42.94	4.06	3.92
	Theor., (%):	42.92	4.04	3.85
$[I_{11}, I_{2}, (NO_{2}),], (5nH_{2}, O_{2}) $	Exp., (%):	43.52	3.82	4.04
$[Lu_2L_3(1(O_3)_6]_n \text{ OIII}_2O(2)]$	Theor., (%):	43.17	3.87	3.87
$[\mathbf{V}_{\mathbf{r}}\mathbf{I}_{\mathbf{r}}(\mathbf{N}\mathbf{O}_{\mathbf{r}}), \mathbf{I}_{\mathbf{r}}\mathbf{S} \in A_{\mathbf{r}}\mathbf{H}_{\mathbf{r}}\mathbf{O}$	Exp., (%)::	46.26	4.47	4.26
$[12L_3(10O_3)_{6]n} 8.041112O(3)$	Theor., (%):	45.81	4.35	4.11
$[(Dy_{0.07}Lu_{0.93})_2L_3(NO_3)_6]_n \cdot 3.48nH_2O$	Exp., (%):	44.05	3.71	4.28
(4)	Theor., (%):	44.13	3.72	3.96
$[(Dy_{0.03}Y_{0.97})_2L_3(NO_3)_6]_n \cdot 7.68nH_2O$	Exp., (%):	46.27	4.28	4.41
(5)	Theor., (%):	46.14	4.21	4.14
$[\mathbf{V}_{\mathbf{h}},\mathbf{L}_{\mathbf{h}}(\mathbf{N}_{\mathbf{h}})]$	Exp., (%):	43.10	3.92	3.86
	Theor., (%):	43.25	3.88	3.88
$[(Yb_{0.16}Y_{0.84})_2L_3(NO_3)_6]_n \cdot 7.62nH_2O$	Exp., (%):	45.69	4.21	4.00
(7)	Theor., (%):	45.59	4.25	4.09

Table S1. The results of the C, H, N-analysis of 1–7

* Composition of the complex is given according to elemental analysis and XRD

patterns

Compound	1	3	4	5_100K	5_250K	6
Formula	$C_{78}H_{88.2}Dy_2N_6O_{35.1}P_6$	$C_{78}H_{89.28}N_6O_{35.64}P_6Y_2$	$C_{78}H_{78.96}Dy_{0.14}Lu_{1.86}N_6O_{30.48}P_6$	C ₇₈ H _{87.36} Dy _{0.06}	N ₆ O _{34.68} P ₆ Y _{1.94}	$C_{78}H_{84}N_6O_{33}P_6Yb_2$
M	2182.16	2044.71	2122.12	2029.54	2029.54	2165.41
<i>Т</i> , К	143(2)	100(2)	100(2)	100(2)	250(2)	100(2)
Wavelength,λ, Å	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	Cubic	Cubic	Cubic	Cubic	Cubic	Cubic
Space group.	I-43d	I-43d	I-43d	I-43d	I-43d	I-43d
a, Å	26.5290(4)	26.5165(11)	26.2405(13)	26.4345(11)	26.650(5)	26.2926(10)
V, Å ³	18670.8(8)	18644(2)	18068(3)	18472(2)	18927(11)	18176(2)
Ζ	8	8	8	8	8	8
D_x , g/cm^3	1.553	1.457	1.560	1.460	1.424	1.583
μ, mm ⁻¹	1.777	1.428	2.323	1.450	1.415	2.236
F(000)	8808	8419	8513	8339	8339	8704
Sample size, mm	0.24 x 0.20 x 0.18	0.32 x 0.28 x 0.16	0.24 x 0.24 x 0.24	0.32 x 0.28 x 0.16	0.32 x 0.28 x 0.16	0.24 x 0.20 x 0.12
θ range, deg	2.171, 32.034	2.172, 28.307	2.195, 28.306	2.436, 30.507	2.417, 28.226	2.191, 30.499
h, k, l ranges	-38<=h<=39	-35<=h<=35	-34<=h<=34	-37<=h<=37	-35<=h<=35	-37<=h<=37
	-39<=k<=39	-35<=k<=35	-34<=k<=34	-37<=k<=37	-35<=k<=35	-37<=k<=37
	-39<=l<=39	-35<=l<=35	-34<=l<=34	-37<=l<=37	-35<=l<=35	-37<=l<=37
Number of measured reflections	108944	140277	150620	178307	158956	149030
Number of independent reflections, R _{int}	5433, 0.0381	3850, 0.0493	3763, 0.0619	4722, 0.0793	3911, 0.0723	4637, 0.0545
Completeness up to $\theta = 25.24^{\circ}$	99.9 %	99.8 %	99.9 %	99.8 %	99.9 %	99.9 %
Absorption correction	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical
	from equivalents	from equivalents	from equivalents	from equivalents	from equivalents	from equivalents
Max, min of transmission	0.7463, 0.6392	0.7454, 0.569	0.4311, 0.3132	0.7461, 0.6446	0.7457, 0.6377	0.7461, 0.6653
Refinement method	Full-matrix	Full-matrix	Full-matrix	Full-matrix	Full-matrix	Full-matrix
	least-squares on F ²	least-squares on F ²	least-squares on F ²	least-squares on F ²	least-squares on F ²	least-squares on F ²
Number of parameters	5433 / 0 / 209	3850 / 0 / 204	3763 / 0 / 192	4722 / 0 / 204	3911 / 0 / 204	4637 / 0 / 200
S	0.990	0.996	1.082	1.132	1.102	0.900
$R1, wR2 [I > 2\sigma(I)]$	0.0167, 0.0437	0.0234, 0.0725	0.0198, 0.0544	0.0259, 0.0599	0.0261, 0.0607	0.0158, 0.0453
R1, wR2 (all data)	0.0195, 0.0452	0.0249, 0.0734	0.0246, 0.0599	0.0283, 0.0608	0.0304, 0.0626	0.0183, 0.0468
Flack parameter	-0.0218(19)	-0.0046(18)	-0.030(3)	-0.0209(15)	-0.0237(18)	-0.017(2)
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}} e / Å^3$	0.281, -0.368	0.417, -0.178	0.453, -0.278	0.308, -0.305	0.195, -0.194	0.520, -0.740
CCDC	2357217	2357221	2403597	2403595	2403596	2357220

 Table S2. Basic crystallographic data and structure refinement results for complexes 1, 3-7.

C 1	-		
Compound	7		
Formula	$C_{78}H_{87.24}N_6O_{34.62}P_6Y_{1.68}Yb_{0.32}$		
M	2053.25		
<i>Т</i> , К	100(2)		
Wavelength,λ, Å	0.71073		
Crystal system	Cubic		
Space group.	I-43d		
a, Å	26.5250(16)		
V, Å ³	18662(3)		
Ζ	8		
$D_x, g/cm^3$	1.462		
μ , mm ⁻¹	1.546		
F(000)	8417		
Sample size, mm	0.20 x 0.10 x 0.09		
θ range, deg	2.428, 25.039		
h, k, l ranges	-31<=h<=29		
	-26<=k<=31		
	-31<=l<=31		
Number of measured reflections	41923		
Number of independent	2762, 0.0792		
reflections, R _{int}			
Completeness up to $\theta = 25.24^{\circ}$	99.8 %		
Absorption correction	Semi-empirical		
-	from equivalents		
	_		
Max, min of transmission	0.874, 0.748		
Refinement method	Full-matrix		
	least-squares on F ²		
Number of parameters	2762 / 0 / 200		
S	1.121		
$R1, wR2 [I > 2\sigma(I)]$	0.0332, 0.0819		
R1, $wR2$ (all data)	0.0359, 0.0830		
Flack parameter	-0.018(3)		
$\Delta \rho_{\rm max} / \Delta \rho_{\rm min} \ e / {\rm \AA}^3$	0.609, -0.347		
CCDC	2434794		

Fig. S1 X-ray patterns of compound 7

Fig. S2 ³¹P NMR spectra of ligand L and its complexes in DMSO-d₆

Fig. S3 ¹H NMR spectra of ligand L and its complexes in DMSO-d₆

Fig. S4 Dependence of the inverse magnetic susceptibility on the temperature for 1 $(H_{dc} = 5000 \text{ Oe})$. The red line is the approximation of the Curie-Weiss law

Fig. S5 Frequency dependencies of the real χ' (a) and imaginary χ'' (b) components of the ac susceptibility for 1 at 3 K in various magnetic fields (0–5000 Oe). Solid lines are visual guides

Fig. S6 Temperature dependencies of magnetic susceptibility (•) and χT (\blacksquare) for 4 (H_{dc} = 5000 Oe)

Fig. S7 Frequency dependencies of the real χ' (a) and imaginary χ'' (b) components of the ac susceptibility for 4 at 2 K in various magnetic fields (0 – 5000 Oe). Solid lines are visual guides

Fig. S8 Frequency dependencies of the real χ' (a) and imaginary χ'' (b) components of the ac susceptibility for 5 at 2 K in various magnetic fields (0 – 5000 Oe). Solid lines are visual guides

Fig. S9 Frequency dependencies of the real χ' (a) and imaginary χ'' (b) components of the ac susceptibility for 6 at 2 K in various magnetic fields (0 – 5000 Oe). Solid lines are visual guides

Fig. S10 Frequency dependencies of the real χ' (a) and imaginary χ'' (b) components of the ac susceptibility for 7 at 2 K in various magnetic fields (0 – 5000 Oe). Solid lines are visual guides

Table S3. Fitting of the τ vs. T dependencies for 6

