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Figure S1. XRD pattern of HEC/CNFs.
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Figure S2. (a, b) FE-SEM images of HEC/CNFs.



Figure S3. TEM image of P-HEC/CNFs.

Figure S4. TEM image of HEC/CNFs.
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Figure S5. The atomic ratio of elements in the P-HEC/CNFs and HEC/CNFs as
determined by ICP-OES.
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Figure S6. XPS survey spectrum of the as-prepared P-HEC CNFs.
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Figure S7. (a) Fe 2p, (c) Ni 2p and (c) Mo 3d XPS spectra of the P-HEC/CNFs and

HEC/CNFs.

Figure S8. Picture of isolated TPA after hydrolysis.
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Figure S9. 'H NMR spectra of the obtained products after PET hydrolysis.
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Figure S10. LSV curves of HEC/CNFs and P-HEC/CNFs for EGOR.
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Figure S11. LSV curves of P-Mo/CNFs for OER and EGOR.
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Figure S12. The FE and productivity of FA for HEC/CNFs toward EGOR.
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Figure S13. In-situ Raman spectra of P-Mo/CNFs with 2.4 M EG.
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Figure S14. The atomic ratio of metals in the CNFs after long-term stability

measurement as determined by ICP-OES.
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Figure S15. Raman spectra of P-HEC/CNFs in 1 M KOH with 2.4 M EG electrolyte.

Supplementary Table 1. Comparison of the catalytic performances of this work and

known catalysts.

EGOR potential (V

Catalyst vs.RHE) FEea (%)
@50 mA cm™

This work 1.46 89.23
Pt/C 0.68 59
RuO, 1.56 35
NiCo,0,/CFP 1.64 90
Ni(OH),-V, 1.41 86
CuO NWs/CF 1.48 88

CoNig »sP/NF 1.31 91.3

NiFe-LDH/NF 1.46 88




