Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting Information

Catalytic Enhancement of Alcohol Oxidation by Electrodeposited Pt on TiO₂5CuxNi Modified Graphene Oxide

Surin Saipanya^{1, 3}, Satit Phiyanalinmat², Paralee Waenkaew^{1, 3}, Li Fang⁵, Jaroon Jakmunee^{1, 3,4}, Suwaphid Themsirimongkon^{1, 3, 6*}

¹Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 Thailand

²Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 Thailand

³Materials Science Research Center, Chiang Mai University, Chiang Mai 50200 Thailand

⁴Research Laboratory for Analytical Instrument and Electrochemistry Innovation,

Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand

⁵ School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China

⁶Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand

***Corresponding author**: Suwaphid Themsirimongkon; <u>suwaphid.the@cmu.ac.th</u>, suwaphid.ochin@gmail.com

Figure SI. 1. CVs of catalysts with (a) variation of metal oxide and GO for methanol oxidation and (b) CVs obtained on the catalysts with various supporting materials surfaces in the rages - 0.4 - 1.0 V Ag/AgCl at scan rate 0.05 V s⁻¹.

Figure SI. 2. FT-IR spectra of supporting materials.

Figure SI. 3. TEM mapping images, histogram distributions and Energy-dispersive X-ray spectroscopy (EDX) spectrum of selected catalysts.

Figure SI. 4. XPS spectra of (a) Pt 4f, (b) Ti 2p, (c) Cu 2p, (d) Ni 2p, (e) O 1s and (f) C 1s the as-prepared catalysts.

Figure SI. 5. CVs of supported materials in 0.5 M H₂SO₄ solution with scan rate 0.05 V s⁻¹.

Figure SI. 6. LSV of (a) methanol, (b) ethanol and (c) n-propanol oxidation on selected catalysts.

Figure SI. 7. CVs of GO-TiO₂5Cu15Ni/Pt catalysts for stability behaviour's in (a) methanol, (b) ethanol and (c) n-propanol oxidation and (d) corresponding current density (If) value of methanol (black line), ethanol (red line) and n-propanol (blue line) oxidation.

Figure SI. 8. CO stripping voltammograms of the as-prepared catalysts in 0.5 M H_2SO_4 at a scan rate of 0.05 mV s⁻¹.

	20	Crystallite size
Electrocatalyst	degree	nm
GO/Pt	39.993	9.2
GO-TiO ₂ /Pt	39.967	13.8
GO-5NiTiO ₂ /Pt	39.994	13.8
GO-5CuTiO ₂ /Pt	40.122	13.8
GO-15NiO5CuTiO ₂ /Pt	40.068	13.8

Table SI. 1. The crystallite size of Pt-based catalysts calculated by the Scherrer equation.

Element/	Binding	Percentage	Binding	Percentage
Oxidation state	energy (V)	(%)	energy (V)	(%)
Pt 4f		7/2		5/2
Pt ⁰	70.28	10.4	75.02	17.4
Pt ²⁺	71.97	19.0	76.54	20.9
Pt ⁴⁺	73.48	23.3	77.03	9.0
Ti 2p		3/2		1/2
Ti ⁴⁺	459.45	59.9	465.52	40.1
Cu 2p		3/2		1/2
Cu ⁰	931.42	13.3	951.27	4.5
Cu ⁺	932.97	30.8	952.80	28.4
Cu ²⁺	934.63	28.4	954.43	12.4
Ni 2p		3/2		1/2
Ni ⁰	853.78	16.8	870.99	9.6
Ni ²⁺	855.17	28.0	872.53	16.2
Ni ³⁺	856.71	19.0	873.75	10.4
O 1s		Percentage		
		(%)		
Ti-OH/C-O	532.81	58.3		
-О-Н/О-С=О	533.79	9.5		
Н-О-Н	535.83	32.2		

 Table SI. 2. Extracted parameters from XPS results.

		Onset	Peak Pe		Peak	Peak		CA
		potential	current Potential (V		ial (V)			
			densi	density				
Electrocatalyst	Electrolyte		(mA o	cm ⁻²)				
		V	I_{f}	I _b	E_{f}	E _b		mA
								cm ⁻²
GO/Pt		0.341	4.74	2.80	0.623	0.493	1.69	0.035
GO-TiO ₂ /Pt		0.452	3.76	1.63	0.623	0.486	2.31	0.010
GO-5NiTiO ₂ /Pt	0.5 M	0.371	6.90	4.26	0.624	0.500	1.62	0.071
GO-5CuTiO ₂ /Pt	Methanol +	0.400	5.18	2.93	0.630	0.504	1.77	0.001
GO-	0.5 M	0.396	4.92	2.64	0.632	0.502	1.86	-
3NiO5CuTiO ₂ /Pt	H_2SO_4							
GO-		0.379	5.13	3.16	0.632	0.506	1.62	-
5NiO5CuTiO ₂ /Pt								
GO-		0.387	7.71	5.50	0.626	0.498	1.40	0.045
15NiO5CuTiO ₂ /Pt								
GO/Pt		0.245	6.14	8.47	0.661	0.491	0.72	0.011
GO-TiO ₂ /Pt		0.222	4.21	5.64	0.697	0.460	0.75	0.003
GO-5NiTiO ₂ /Pt	0.5 M	0.183	7.43	10.50	0.673	0.496	0.71	0.014
GO-5CuTiO ₂ /Pt	Ethanol +	0.225	6.35	8.56	0.679	0.496	0.74	0.012
GO-	0.5 M	0.209	6.52	7.70	0.679	0.490	0.85	-
3NiO5CuTiO ₂ /Pt	H_2SO_4							
GO-		0.223	6.46	8.80	0.683	0.496	0.73	-
5NiO5CuTiO ₂ /Pt	1							
GO-		0.212	8.76	11.97	0.673	0.496	0.73	0.082
15NiO5CuTiO ₂ /Pt								
GO/Pt		0.360	2.10	3.63	0.715	0.518	0.58	0.001
GO-TiO ₂ /Pt		0.335	0.91	1.83	0.764	0.478	0.50	0.003
GO-5NiTiO ₂ /Pt	0.5 M n-	0.319	2.00	3.40	0.731	0.506	0.59	0.008
GO-5CuTiO ₂ /Pt	Propanol +	0.343	0.72	1.41	0.766	0.458	0.51	0.004
G O-	0.5 M	0.278	0.93	1.70	0.771	0.478	0.55	-
3NiO5CuTiO ₂ /Pt	H_2SO_4							
GO-		0.343	0.96	1.78	0.768	0.478	0.54	-
5NiO5CuTiO ₂ /Pt								
G O-		0.287	2.33	4.27	0.737	0.576	0.55	0.007
15NiO5CuTiO ₂ /Pt								

 Table SI. 3. Electrochemical parameters of the as-prepared catalysts in alcohol oxidation.

Table SI. 4. Comparison of our catalysts with previous work on CO oxidation and Tafel plot.

Catalysts	Eonset	E _{max, CO}	ECSA _{CO}	Tafel slope	Ref.
	V	V	m ² g ⁻¹	mV dec ⁻¹	
CeOx/PtCu/CeCuOx/C	0.493	0.613	-	214 MeOH	[22]
TiO ₂ /Pt/CF	-	0.553	-	-	[23]
PtRu/TiO ₂ /	0.170	0.214	67.0	-	[24]

ONCNT-400					
Pt/TiO ₂ NCs-C	0.363	0.663	72	-	[25]
a-FeOx/NiOx/Pt	-	0.69	-	-	[26]
1Pt/3CuO/CNT	0.41	0.59	470	28 MeOH,	[27]
				108 EtOH	
f PtNDs@CoS2-NrGO	-	-	-	55.5 MeOH	[28]
YOx/MoOx-Pt	0.50	-	-		[29]
Pt-Cu-Mo ₂ C-2	0.336	0.538	60.5	77 MeOH,	[30]
				146 EtOH	
GO-15NiO5CuTiO ₂ /Pt	0.54	0.68	68.9	113 MeOH,	This work
				84 EtOH,	
				125 n-PrOH	

 Table SI. 5. CO-stripping results of the as-prepared catalysts.

Electrocatalyst	Onset potential	Peak current density	Peak Potential	ECSA
	V vs. Ag/AgCl	(µA)	V vs. Ag/AgCl	$m^2 g^{-1}$
GO/Pt	0.55	30.2	0.689	50.6
GO-TiO ₂ /Pt	0.40	12.0	0.663	12.6
GO-5NiTiO ₂ /Pt	0.46	22.0	0.677	59.7
GO-5CuTiO ₂ /Pt	0.55	7.0	0.688	4.4
GO-15NiO5CuTiO ₂ /Pt	0.54	19.9	0.681	68.9