Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

SUPPORTING INFORMATION

Metal- and Base-free Selective Amidations of Organoboronic Acids with Dioxazolones and Isocyanates

Hui Sun, Shuguang Chen*, Hui Wang*

wanghui29085@ahnu.edu.cn, shugchen@ahnu.edu.cn

TABLE OF CONTENTS

1. MATERIALS AND GENERAL METHODS	.S2
1.1. Glassware, Solvents and Reagents	.S2
1.2. Chromatography and Instrumentation	.S2
1.3. Naming of Compounds	.S3
2. EXPERIMENTAL DATA	.S3
2.1. Reaction Optimizations	.S3
2.2. General Procedures	.S4
2.3. Characterization Data	.S5
3. MECHANISTIC STUDIES	\$54
3.1. Additional experiment	\$54
3.2. Control experiment	355
3.3. Radical trap experiments	\$55
4. SPECTROSCOPIC DATA	\$57
5. REFERENCES	134

1. MATERIALS AND GENERAL METHODS

1.1. Glassware, Solvents and Reagents

All manipulations were performed with oven-dried (130 °C for a minimum of 12 h) glassware under air or an atmosphere of nitrogen, unless otherwise stated.

All anhydrous solvents were commercially supplied. Reagents were purchased from commercial sources and used as received.

1.2. Chromatography and Instrumentation

Thin layer chromatography (TLC) was performed using Kepunuo Kieselgel 60 GF254 fluorescent treated silica, which was visualized under UV light, or by staining with aqueous basic potassium permanganate followed by heating.

Flash column chromatography (FCC) was carried out using Liang Chen Guiyuan silica gel (300-400 mesh).

NMR spectra were recorded, using Bruker 400 MHz for ¹H, ¹³C and ¹⁹F acquisitions. All NMR spectra were recorder at 25 °C unless otherwise stated. Chemical shifts (δ) are reported in parts per million (ppm) and referenced to CDCl₃ (¹H: 7.26 ppm; ¹³C: 77.16 ppm) or *d*₆-DMSO (¹H: 2.50 ppm; ¹³C: 39.5 ppm). Coupling constants (*J*) are given in Hertz (Hz) and refer to apparent multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, hex = hextet, h = heptet, m = multiplet, brs = broad signal, dd = doublet of doublets, etc.). The ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants, number of protons).

IR spectra were recorded were recorded on Bruker INVENIO. Selected absorption maxima (v_{max}) are reported in wavenumbers (cm⁻¹).

High resolution mass spectra (HRMS) were recorded on a Bruker Daltonics MicrOTOF II by Electrospray Ionisation (ESI).

Melting point (M. p.): Stuart melting point apparatus X-4, Ruihongcheng Scientific, values are uncorrected.

1.3. Naming of Compounds

Compound names are those generated by ChemDraw Professional 20.0 software (PerkinElmer), following the IUPAC nomenclature.

2. EXPERIMENTAL DATA

2.1. Reaction Optimizations

 Table S1: Optimization studies for the coupling reaction of 3-phenyl-1,4,2-dioxazol-5-one¹ (1a) and 2

 thiopheneboronic acid (2a).^a

^a Reaction conditions: **1a** (0.25 mmol), **2** (0.75 mmol), and solvent (2.0 mL) under air for 16 hours; ^b Isolated yields; ^c 1.0 mL solvent was used. ^d The reaction was performed in dark. n.d. = not detected. DCE = Dichloroethane; DMAc = Dimethylacetamide. Table S2: Optimization studies for the coupling reaction of benzylisocyanate (4a) and 2-thiopheneboronic acid (2a).^a

PhN 4a	j≂C ⁼⁰ + S 2a	OH OH Solvent, T, <i>under ai</i>	→ Ph N 16 h H r 5	Saa
Entry	Solvent	Tempt. / °C	Time	5aa (%) ^b
1	DCE	120	16 h	85
2	DMAc	120	16 h	Trace
3	PhCH ₃	120	16 h	57
4	1,4-dioxane	120	16 h	49
5	THF	120	16 h	38
6	DME	120	16 h	50
7	CH ₃ CN	120	16 h	39
8	/	120	16 h	47
9	DCE	100	16 h	58
10	DCE	130	16 h	91

^a Reaction conditions: **4a** (0.75 mmol, 3.0 equiv.), **2a** (0.25 mmol, 1.0 equiv.), and DCE (1.0 mL), air, 16 h; ^b Isolated yield.

2.2. General Procedures

2.2.1. General Procedure A: Reactions of dioxazolones 1 with boronic acids 2

To a 10 mL vial equipped with a magnetic stir bar was added dioxazolone (1) (0.25 mmol, 1.0 equiv.), boronic acid (2) (0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Under air, the vial was sealed with a septum and allowed to stir at 120 °C for 16 hours. After the reaction, the mixture was cooled to room temperature and diluted with DCM (2.0 mL) and transferred into a 25 mL round flask, and concentrated under reduced pressure. The residue was purified by flash column chromatography to afford the coupled product **3**.

2.2.2. General Procedure B: Reactions of isocyanate 4 with boronic acids 2

To a 10 mL vial equipped with a magnetic stir bar was added isocyanate (4) (0.75 mmol, 3.0 equiv.), boronic acid (2) (0.25 mmol, 1.0 equiv.), and DCE (1.0 mL). Under air, the vial was sealed with a septum and allowed to stir at 130 °C for 16 hours. After the reaction, the mixture was cooled to room temperature and diluted with DCM (2.0 mL) and transferred into a 25 mL round flask, and concentrated under reduced pressure. The residue was purified by flash column chromatography to afford the coupled product **5**.

2.3. Characterization Data

N-(Thiophen-2-yl)benzamide (3aa)

Prepared following **General Procedure A**, using 3-phenyl-1,4,2-dioxazol-5-one (**1a**) (40.8 mg, 0.25 mmol, 1.0 equiv.), 2-thiopheneboronic acid (**2a**) (96.0 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3aa** (38.6 mg, 76%) as a white solid.

TLC: $R_{\rm f}$ = 0.55 (Petroleum ether / EtOAc: 5 / 1, KMnO_4 stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, d_6 -DMSO): $\delta_{\rm H}$ 11.56 (s, 1H), 8.05 – 7.96 (m, 2H), 7.65 – 7.51 (m, 3H), 7.07 – 6.84 (m, 3H) ppm;

¹³**C NMR** (101 MHz, *d*₆-DMSO): *δ*_C 163.2, 140.0, 133.1, 131.9, 128.5, 127.6, 124.1, 117.4, 112.1 ppm.

All recorded spectroscopic data matched those previously reported in the literature.²

4-Methyl-*N*-(thiophen-2-yl)benzamide (3ba)

Prepared following **General Procedure A**, using 3-(*p*-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), 2-thiopheneboronic acid (**2a**) (96.0 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3ba** (46.3 mg, 83%) as a white solid. **TLC**: $R_f = 0.28$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

M. p.: 208 – 210 °C.

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, d_6 -DMSO): δ_H 11.46 (s, 1H), 7.97 – 7.86 (m, 2H), 7.35 (d, J = 8.0 Hz, 2H), 6.99 (dd, J = 5.2, 1.6 Hz, 1H), 6.95 – 6.87 (m, 2H), 2.38 (s, 3H) ppm;

¹³C NMR (101 MHz, *d*₆-DMSO): *δ*_C 163.1, 142.0, 140.1, 130.3, 129.1, 127.6, 124.0, 117.3, 111.9,
21.1 ppm.

IR (film): *v*_{max} 3454, 3217, 3038, 1627, 1577, 1497, 1349, 1320, 898, 831, 808, 736, 684 cm⁻¹.

HRMS (ESI⁺): m/z calculated for $C_{12}H_{12}NOS [M+H]^+$, 218.0634; found, 218.0640.

4-Methoxy-N-(thiophen-2-yl)benzamide (3ca)

Prepared following **General Procedure A**, using 3-(4-methoxyphenyl)-1,4,2-dioxazol-5-one (**1c**) (48.3 mg, 0.25 mmol, 1.0 equiv.), 2-thiopheneboronic acid (**2a**) (96.0 mg, 0.75 mmol, 3.0 equiv.),

and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3ca** (37.6 mg, 64%) as a white solid. **TLC**: $R_f = 0.14$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

M. p.: 174.5 – 176.9 °C.

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, d_6 -DMSO): δ_H 11.39 (s, 1H), 7.99 (d, J = 8.3 Hz, 2H), 7.08 (d, J = 8.8 Hz, 2H), 7.03 – 6.84 (m, 3H), 3.84 (s, 3H) ppm;

¹³C NMR (101 MHz, *d*₆-DMSO): *δ*_C 162.7, 162.1, 140.2, 129.6, 125.2, 124.0, 117.2, 113.8, 111.7, 55.5 ppm.

M. p.: 174.5 – 176.9 °C.

IR (film): *v*_{max} 3443, 1627, 1609, 1572, 1517, 1351, 1320, 1255, 1173, 1036, 842, 809, 739, 685 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₂H₁₂NO₂S [M+H]⁺, 234.0583; found, 234.0587.

4-Bromo-N-(thiophen-2-yl)benzamide (3da)

Prepared following **General Procedure A**, using 3-(4-bromophenyl)-1,4,2-dioxazol-5-one (**1d**) (60.5 mg, 0.25 mmol, 1.0 equiv.), 2-thiopheneboronic acid (**2a**) (96.0 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3da** (54.2 mg, 77%) as a brown solid.

TLC: $R_f = 0.30$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

M. p.: 231 – 233 °C.

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, d_6 -DMSO): $\delta_{\rm H}$ 11.62 (s, 1H), 7.95 (d, J = 8.2 Hz, 2H), 7.76 (d, J = 8.2 Hz, 2H), 7.17 – 6.81 (m, 3H) ppm;

¹³**C NMR** (101 MHz, *d*₆-DMSO): *δ*_C 162.2, 139.8, 132.2, 131.6, 129.7, 125.8, 124.1, 117.6, 112.3 ppm.

IR (film): *v*_{max} 3222, 3038, 1628, 1589, 1507, 1482, 1353, 1321, 1068, 1010, 836, 807, 737, 691 cm⁻¹. **HRMS** (ESI⁺): m/z calculated for C₁₁H₉BrNOS [M+H]⁺, 281.9583; found, 281.9590.

4-Chloro-N-(thiophen-2-yl)benzamide (3ea)

Prepared following **General Procedure A**, using 3-(4-chlorophenyl)-1,4,2-dioxazol-5-one (**1e**) (49.4 mg, 0.25 mmol, 1.0 equiv.), 2-thiopheneboronic acid (**2a**) (96.0 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3ea** (43.0 mg, 72%) as a brown solid.

TLC: $R_f = 0.26$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

M. p.: 243 – 244 °C.

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, d_6 -DMSO): δ_H 11.62 (s, 1H), 8.02 (d, J = 8.2 Hz, 2H), 7.62 (d, J = 8.2 Hz, 2H), 7.18 – 6.78 (m, 3H) ppm;

¹³**C NMR** (101 MHz, *d*₆-DMSO): *δ*_C 162.1, 139.8, 136.8, 131.8, 129.6, 128.7, 124.1, 117.6, 112.3 ppm.

IR (film): v_{max} 3222, 3039, 1636, 1577, 1559, 1483, 1348, 1322, 1090, 1012, 897, 840, 807, 692, 678 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₁H₉ClNOS [M+H]⁺, 238.0088; found, 238.0095.

N-(Thiophen-2-yl)-4-(trifluoromethyl)benzamide (3fa)

Prepared following **General Procedure A**, using 3-[4-(trifluoromethyl)phenyl]-1,4,2-dioxazol-5-one (**1f**) (57.8 mg, 0.25 mmol, 1.0 equiv.), 2-thiopheneboronic acid (**2a**) (96.0 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3fa** (37.0 mg, 55%) as a white solid.

TLC: $R_f = 0.33$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

M. p.: 201 – 203 °C.

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, d_6 -DMSO): $\delta_{\rm H}$ 11.79 (s, 1H), 8.19 (d, J = 8.0 Hz, 2H), 7.94 (d, J = 8.1 Hz, 2H), 7.05 (d, J = 5.3 Hz, 1H), 6.99 – 6.89 (m, 2H) ppm;

¹³**C NMR** (101 MHz, d_{δ} -DMSO): δ_{C} 162.0, 139.6, 136.9, 131.6 (q, ${}^{2}J_{C-F}$ = 31.8 Hz), 128.6, 125.6

(q, ${}^{3}J_{C-F} = 3.8 \text{ Hz}$), 124.2, 123.9 (q, ${}^{1}J_{C-F} = 272.4 \text{ Hz}$), 117.9, 112.7 ppm;

¹⁹**F NMR** (376 MHz, d_6 -DMSO): δ_F -61.35 ppm.

IR (film): *v*_{max} 3327, 1651, 1600, 1531, 1420, 1407, 1331, 1184, 1156, 1112, 1063, 833, 753, 728 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₂H₉F₃NOS [M+H]⁺, 272.0351; found, 272.0359.

Methyl 4-(thiophen-2-ylcarbamoyl)benzoate (3ga)

Prepared following **General Procedure A**, using methyl 4-(5-oxo-1,4,2-dioxazol-3-yl)benzoate (**1g**) (55.3 mg, 0.25 mmol, 1.0 equiv.), 2-thiopheneboronic acid (**2a**) (96.0 mg, 0.75 mmol, 3.0 equiv.), and

DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3ga** (30.0 mg, 46%) as a brown solid.

TLC: $R_f = 0.14$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

M. p.: 167 – 169 °C.

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): *δ*_H 9.03 (s, 1H), 8.13 – 8.05 (m, 2H), 7.98 – 7.87 (m, 2H), 7.01 – 6.83 (m, 3H), 3.94 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 166.3, 163.2, 139.0, 137.2, 133.3, 130.1, 127.4, 124.3, 118.9, 113.2, 52.7 ppm.

IR (film): *v*_{max} 3333, 3119, 2949, 1720, 1699, 1662, 1555, 1445, 1351, 1284, 1126, 825, 698, 643 cm⁻¹. **HRMS** (ESI⁺): m/z calculated for C₁₃H₁₂NO₃S [M+H]⁺, 262.0532; found, 262.0540.

N-(Thiophen-2-yl)-2-naphthamide (3ha)

Prepared following **General Procedure A**, using 3-(naphthalen-2-yl)-1,4,2-dioxazol-5-one (**1h**) (53.3 mg, 0.25 mmol, 1.0 equiv.), 2-thiopheneboronic acid (**2a**) (96.0 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3ha** (52.8 mg, 83%) as a black solid.

TLC: $R_f = 0.26$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

M. p.: 179 – 180 °C.

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, d_6 -DMSO): $\delta_{\rm H}$ 11.77 (s, 1H), 8.65 (s, 1H), 8.25 – 7.92 (m, 4H), 7.71 – 7.56 (m, 2H), 7.16 – 6.86 (m, 3H) ppm;

¹³**C NMR** (101 MHz, d_6 -DMSO): δ_C 163.2, 140.1, 134.4, 132.1, 130.5, 129.0, 128.2, 128.1, 128.0,

127.7, 127.0, 124.2, 124.1, 117.4, 112.2 ppm.

IR (film): *v*_{max} 3455, 3230, 3118, 3051, 1634, 1570, 1513, 1498, 1439, 908, 837, 814, 776, 762 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₅H₁₂NOS [M+H]⁺, 254.0634; found, 254.0639.

3-Methyl-N-(thiophen-2-yl)benzamide (3ia)

Prepared following **General Procedure A**, using 3-(m-tolyl)-1,4,2-dioxazol-5-one (1i) (44.3 mg, 0.25 mmol, 1.0 equiv.), 2-thiopheneboronic acid (2a) (96.0 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3ia** (40.7 mg, 75%) as a light yellow solid.

TLC: $R_f = 0.31$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

M. p.: 122 – 123 °C.

NMR Spectroscopy (*see spectra*):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.76 (s, 1H), 7.70 (s, 1H), 7.68 – 7.63 (m, 1H), 7.39 – 7.32 (m, 2H), 6.95 – 6.86 (m, 2H), 6.81 (dd, *J* = 3.8, 1.4 Hz, 1H), 2.40 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 164.2, 139.4, 138.9, 133.2, 133.1, 128.8, 128.0, 124.2, 124.1, 118.4, 112.4, 21.5 ppm.

IR (film): v_{max} 3301, 3217, 3043, 1630, 1566, 1508, 1351, 1312, 1080, 853, 819, 802, 729, 679 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₂H₁₂NOS [M+H]⁺, 218.0634; found, 218.0638.

3,5-Dimethyl-N-(thiophen-2-yl)benzamide (3ja)

Prepared following **General Procedure A**, using 3-(3,5-dimethylphenyl)-1,4,2-dioxazol-5-one (**1j**) (47.8 mg, 0.25 mmol, 1.0 equiv.), 2-thiopheneboronic acid (**2a**) (96.0 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3ja** (41.3 mg, 71%) as a white solid.

TLC: $R_f = 0.34$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

M. p.: 185 – 186 °C.

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.98 (s, 1H), 7.47 (s, 2H), 7.13 (s, 1H), 6.93 – 6.82 (m, 3H), 2.32 (s, 6H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): *δ*_C 164.5, 139.5, 138.6, 133.9, 133.1, 125.0, 124.1, 118.3, 112.4, 21.3 ppm.

IR (film): v_{max} 3455, 3232, 3054, 1633, 1596, 1562, 1507, 1352, 1328, 866, 852, 802, 738, 689 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₃H₁₄NOS [M+H]⁺, 232.0791; found, 232.0796.

3-Fluoro-N-(thiophen-2-yl)benzamide (3ka)

3ka

Prepared following **General Procedure A**, using 3-(3-fluorophenyl)-1,4,2-dioxazol-5-one (**1k**) (45.3 mg, 0.25 mmol, 1.0 equiv.), 2-thiopheneboronic acid (**2a**) (96.0 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN

(1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3ka** (42.1 mg, 76%) as a white solid.

TLC: $R_f = 0.28$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 9.25 (s, 1H), 7.74 – 7.50 (m, 2H), 7.38 (td, J = 7.8, 5.4 Hz, 1H), 7.23 – 7.14 (m, 1H), 6.96 – 6.82 (m, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): $\delta_{\rm C}$ 163.2 (d, ${}^{4}J_{\rm C-F} = 2.3$ Hz), 162.8 (d, ${}^{1}J_{\rm C-F} = 248.5$ Hz), 138.9, 135.4 (d, ${}^{3}J_{\rm C-F} = 7.0$ Hz), 130.6 (d, ${}^{3}J_{\rm C-F} = 8.0$ Hz), 124.3, 122.8 (d, ${}^{4}J_{\rm C-F} = 3.2$ Hz), 119.3 (d, ${}^{2}J_{\rm C-F} = 21.1$ Hz), 118.8, 114.7 (d, ${}^{2}J_{\rm C-F} = 23.2$ Hz), 113.4 ppm; ¹⁹**F NMR** (376 MHz, CDCl₃): $\delta_{\rm F}$ -111.01 ppm.

All recorded spectroscopic data matched those previously reported in the literature.³

2-Fluoro-N-(thiophen-2-yl)benzamide (3la)

3la

Prepared following **General Procedure A**, using 3-(2-fluorophenyl)-1,4,2-dioxazol-5-one (**1**) (45.3 mg, 0.25 mmol, 1.0 equiv.), 2-thiopheneboronic acid (**2a**) (96.0 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3la** (30.0 mg, 54%) as a white solid.

TLC: $R_f = 0.32$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

M. p.: 107 – 110 °C.

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 9.17 (s, 1H), 8.21 (t, *J* = 7.9 Hz, 1H), 7.54 (tdd, *J* = 7.6, 5.2, 1.8 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.19 (dd, *J* = 12.4, 8.2 Hz, 1H), 6.99 – 6.87 (m, 2H), 6.80 (dd, *J* = 3.7, 1.4 Hz, 1H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): $\delta_{\rm C}$ 160.6 (d, ${}^{1}J_{\rm C-F}$ = 246.8 Hz), 159.6 (d, ${}^{3}J_{\rm C-F}$ = 3.4 Hz), 138.8, 134.3 (d, ${}^{3}J_{\rm C-F}$ = 9.7 Hz), 132.5 (d, ${}^{4}J_{\rm C-F}$ = 1.8 Hz), 125.4 (d, ${}^{3}J_{\rm C-F}$ = 3.2 Hz), 124.1, 119.7 (d, ${}^{2}J_{\rm C-F}$ = 10.6 Hz), 118.7, 116.3 (d, ${}^{2}J_{\rm C-F}$ = 25.0 Hz), 112.7 ppm;

¹⁹**F NMR** (376 MHz, CDCl₃): $\delta_{\rm F}$ -113.01 ppm.

IR (film): *v*_{max} 3250, 3111, 1633, 1613, 1563, 1508, 1446, 1353, 1321, 902, 812, 780, 752, 690 cm⁻¹. **HRMS** (ESI⁺): m/z calculated for C₁₁H₉FNOS [M+H]⁺, 222.0383; found, 222.0389.

N-(Tiophen-2-yl)thiophene-2-carboxamide (3ma)

Prepared following **General Procedure A**, using 3-(thiophen-2-yl)-1,4,2-dioxazol-5-one (**1m**) (42.3 mg, 0.25 mmol, 1.0 equiv.), 2-thiopheneboronic acid (**2a**) (96.0 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3ma** (46.3 mg, 89%) as a brown solid.

TLC: $R_f = 0.17$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, d_6 -DMSO): $\delta_{\rm H}$ 11.55 (s, 1H), 8.05 – 7.96 (m, 1H), 7.92 – 7.83 (m, 1H), 7.28 – 7.18 (m, 1H), 7.01 (dd, J = 4.8, 2.3 Hz, 1H), 6.95 – 6.86 (m, 2H) ppm;

¹³**C NMR** (101 MHz, *d*₆-DMSO): *δ*_C 158.0, 139.6, 138.2, 132.3, 129.3, 128.3, 124.2, 117.6, 112.1 ppm.

All recorded spectroscopic data matched those previously reported in the literature.⁴

N-(Thiophen-2-yl)cinnamamide (3na)

Prepared following **General Procedure A**, using (*E*)-3-styryl-1,4,2-dioxazol-5-one (**1n**) (47.3 mg, 0.25 mmol, 1.0 equiv.), 2-thiopheneboronic acid (**2a**) (96.0 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3na** (34.3 mg, 60%) as a bright yellow solid.

TLC: $R_f = 0.17$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

M. p.: 137 – 139 °C.

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 9.72 (s, 1H), 7.77 (d, J = 15.6 Hz, 1H), 7.41 – 7.36 (m, 2H), 7.32 – 7.23 (m, 3H), 6.91 – 6.85 (m, 3H), 6.79 (d, J = 15.6 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 163.2, 143.1, 139.3, 134.5, 130.2, 128.9, 128.2, 124.3, 119.5, 118.6, 112.8 ppm.

IR (film): *v*_{max} 3314, 1657, 1619, 1558, 1499, 1445, 1254, 1166, 983, 856, 812, 772, 708, 678, cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₃H₁₂NOS [M+H]⁺, 230.0634; found, 230.0641.

N-(Thiophen-2-yl)cyclohexanecarboxamide (3oa)

Prepared following **General Procedure A**, using 3-cyclohexyl-1,4,2-dioxazol-5-one (**1o**) (43.0 mg, 0.25 mmol, 1.0 equiv.), 2-thiopheneboronic acid (**2a**) (96.0 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3oa** (12.1 mg, 23%) as a brown solid.

TLC: $R_f = 0.30$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

M. p.: 199 – 200 °C.

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.02 (s, 1H), 6.89 – 6.79 (m, 2H), 6.63 (d, J = 3.6 Hz, 1H), 2.28 (tt, J = 11.8, 3.6 Hz, 1H), 2.03 – 1.90 (m, 2H), 1.88 – 1.78 (m, 2H), 1.71 – 1.50 (m, 4H), 1.37 – 1.18 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 172.7, 139.2, 123.9, 118.0, 111.4, 45.4, 29.7, 25.7, 25.7 ppm. IR (film): $v_{\rm max}$ 3443, 2850, 1645, 1577, 1507, 1445, 1396, 1272, 1080, 956, 893, 845, 806, 683 cm⁻¹. HRMS (ESI⁺): m/z calculated for C₁₁H₁₆NOS [M+H]⁺, 210.0947; found, 210.0952.

4-Methyl-*N*-(4-phenoxyphenyl)benzamide (3bb)

Prepared following **General Procedure A**, using 3-(p-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), 4-phenoxyphenyl boronic acid (**2b**) (160.5 mg, 0.75 mmol, 3.0 equiv.), and CH₃CN (2.0 mL) at 140 °C. Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3bb** (55.3 mg, 73%) as a white solid.

TLC: $R_f = 0.31$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹H NMR (400 MHz, CDCl₃): δ_H 7.97 (s, 1H), 7.76 (d, J = 7.9 Hz, 2H), 7.64 – 7.56 (m, 2H), 7.37 – 7.30 (m, 2H), 7.26 (d, J = 8.0 Hz, 2H), 7.09 (m, 1H), 7.04 – 6.97 (m, 4H), 2.41 (s, 3H) ppm;
¹³C NMR (101 MHz, CDCl₃): δ_C 165.9, 157.6, 153.7, 142.5, 133.6, 132.0, 129.9, 129.5, 127.2, 123.2, 122.2, 119.8, 118.6, 21.6 ppm.

All recorded spectroscopic data matched those previously reported in the literature.⁵

N-(2,3-Dihydrobenzo[*b*][1,4]dioxin-6-yl)-4-methylbenzamide (3bc)

Prepared following **General Procedure A**, using 3-(p-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), 1,4-benzodioxane-6-boronic acid (**2c**) (135.0 mg, 0.75 mmol, 3.0 equiv.), and CH₃CN (2.0 mL) at 140 °C. Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3bc** (33.2 mg, 49%) as a white solid.

TLC: $R_f = 0.16$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.73 (d, J = 7.8 Hz, 3H), 7.25 (d, J = 8.7 Hz, 3H), 7.01 (dd, J = 8.6, 2.5 Hz, 1H), 6.83 (d, J = 8.6 Hz, 1H), 4.25 (s, 4H), 2.41 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 165.7, 143.6, 142.3, 140.6, 132.2, 131.8, 129.5, 127.1, 117.3, 114.0, 110.2, 64.6, 64.4, 21.6 ppm.

All recorded spectroscopic data matched those previously reported in the literature.⁶

N-(Benzo[*d*][1,3]dioxol-5-yl)-4-methylbenzamide (3bd)

Prepared following **General Procedure A**, using 3-(p-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), 3,4-methylenedioxyphenylboronic acid (**2d**) (124.5 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3bd** (38.3 mg, 60%) as a white solid.

TLC: $R_f = 0.24$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

M. p.: 164 – 165 °C.

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.91 (s, 1H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.33 (s, 1H), 7.23 (d, *J* = 7.9 Hz, 2H), 6.90 (d, *J* = 8.1 Hz, 1H), 6.74 (d, *J* = 8.3 Hz, 1H), 5.95 (s, 2H), 2.40 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): $\delta_{\rm C}$ 165.8, 147.9, 144.5, 142.4, 132.4, 132.1, 129.5, 127.1, 113.7, 108.2, 103.4, 101.4, 21.6 ppm.

IR (film): *v*_{max} 3446, 3269, 2885, 1644, 1539, 1503, 1491, 1448, 1343, 1246, 1196, 1040, 933, 857, 812 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₅H₁₄NO₃ [M+H]⁺, 256.0968; found, 256.0973.

N-(3-Methoxyphenyl)-4-methylbenzamide (3be)

Prepared following **General Procedure A**, using 3-(p-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), 3-methoxyphenylboronic acid (**2e**) (114.0 mg, 0.75 mmol, 3.0 equiv.), and CH₃CN (2.0 mL) at 140 °C. Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3be** (41.3 mg, 68%) as a white solid.

TLC: $R_f = 0.27$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.92 (s, 1H), 7.75 (d, J = 8.2 Hz, 2H), 7.44 (t, J = 2.2 Hz, 1H), 7.29 – 7.21 (m, 3H), 7.09 (dd, J = 8.0, 2.0 Hz, 1H), 6.69 (dd, J = 8.2, 2.5 Hz, 1H), 3.81 (s, 3H), 2.41 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 165.9, 160.3, 142.5, 139.4, 132.2, 129.8, 129.6, 127.1, 112.4, 110.6, 105.8, 55.4, 21.6 ppm.

All recorded spectroscopic data matched those previously reported in the literature.⁷

N-{4-{[(*tert*-Butyldimethylsilyl)oxy]methyl}phenyl}-4-methylbenzamide (3bf)

Prepared following **General Procedure A**, using 3-(*p*-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), $\{4-\{[(1,1-dimethylethyl)dimethylsilyl]oxy\}methyl\}phenylboronic acid ($ **2f**) (200.0 mg, 0.75 mmol, 3.0 equiv.), and CH₃CN (2.0 mL) at 140 °C. Purification by flash column chromatography (Petroleum ether / EtOAc: 10 / 1) gave the title compound**3bf**(38.9 mg, 44%) as a white solid.

TLC: $R_f = 0.47$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

M. p.: 103 – 104 °C.

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.82 (s, 1H), 7.76 (d, J = 8.1 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 7.30 (dd, J = 16.2, 8.1 Hz, 4H), 4.72 (s, 2H), 2.42 (s, 3H), 0.94 (s, 9H), 0.10 (s, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 165.7, 142.5, 137.7, 136.9, 132.3, 129.6, 127.1, 127.0, 120.1,
64.8, 26.1, 21.7, 18.6, -5.1 ppm;

IR (film): *v*_{max} 3363, 2854, 1660, 1632, 1597, 1412, 1382, 1362, 1252, 1065, 1048, 839, 774, 716 cm⁻¹. **HRMS** (ESI⁺): m/z calculated for C₂₁H₃₀NO₂Si [M+H]⁺, 356.2040; found, 356.2045.

4-Methyl-*N*-(naphthalen-2-yl)benzamide (3bg)

Prepared following **General Procedure A**, using 3-(p-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), 2-naphthaleneboronic acid (**1g**) (129.0 mg, 0.75 mmol, 3.0 equiv.), and CH₃CN (2.0 mL) at 140 °C. Purification by flash column chromatography (Petroleum ether / EtOAc: 10/1) gave the title compound **3bg** (44.0 mg, 67%) as a white solid.

TLC: $R_f = 0.33$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.33 (s, 1H), 8.17 (s, 1H), 7.87 – 7.72 (m, 5H), 7.60 (d, J = 8.7 Hz, 1H), 7.51 – 7.37 (m, 2H), 7.24 (s, 2H), 2.41 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 166.1, 142.5, 135.6, 134.0, 132.1, 130.8, 129.5, 128.9, 127.8, 127.7, 127.2, 126.6, 125.2, 120.3, 117.2, 21.6 ppm.

All recorded spectroscopic data matched those previously reported in the literature.⁸

4-Methyl-N-[4-(trifluoromethyl)phenyl]benzamide (3bh)

Prepared following **General Procedure A**, using 3-(p-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), 4-trifluoromethylphenylboronic acid (**2h**) (142.4 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3bh** (39.6 mg, 57%) as a white solid.

TLC: $R_f = 0.41$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, *d*₆-DMSO): *δ*_H 10.50 (s, 1H), 8.02 (d, *J* = 8.5 Hz, 2H), 7.96 – 7.87 (m, 2H), 7.71 (d, *J* = 8.6 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 2.39 (s, 3H) ppm; ¹³**C NMR** (101 MHz, *d*₆-DMSO): *δ*_C 165.8, 142.9, 142.0, 131.6, 129.0, 127.9, 125.9 (q, ³*J*_{C-F} = 3.8 Hz), 123.5 (d, ²*J*_{C-F} = 31.9 Hz), 124.4 (d, ¹*J*_{C-F} = 271.3 Hz), 120.1, 21.0 ppm; ¹⁹**F NMR** (376 MHz, *d*₆-DMSO): *δ*_F -60.31 ppm.

All recorded spectroscopic data matched those previously reported in the literature.9

N-(4-Cyanophenyl)-4-methylbenzamide (3bi)

Prepared following **General Procedure A**, using 3-(p-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), 4-cyanophenylboronic acid (**2i**) (110.2 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3bi** (23.4 mg, 40%) as a light yellow solid.

TLC: $R_f = 0.15$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹H NMR (400 MHz, *d*₆-DMSO): *δ*_H 10.56 (s, 1H), 7.99 (d, *J* = 8.4 Hz, 2H), 7.88 (d, *J* = 7.9 Hz, 2H), 7.81 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 7.8 Hz, 2H), 2.39 (s, 3H) ppm;
¹³C NMR (101 MHz, *d*₆-DMSO): *δ*_C 166.0, 143.6, 142.2, 133.1, 131.5, 129.0, 127.9, 120.1, 119.1, 105.2, 21.0 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹⁰

jN-([1,1'-Biphenyl]-3-yl)-4-methylbenzamide (3bj)

Prepared following **General Procedure A**, using 3-(*p*-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), 3-biphenylboronic acid (**2j**) (148.5 mg, 0.75 mmol, 3.0 equiv.), and CH₃CN (2.0 mL) at 140 °C. Purification by flash column chromatography (Petroleum ether / EtOAc: 10 / 1) gave the title compound **3bj** (50.5 mg, 70%) as a white solid.

TLC: $R_f = 0.58$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

M. p.: 122 – 123 °C.

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.14 (s, 1H), 7.90 (s, 1H), 7.79 (d, J = 8.1 Hz, 2H), 7.65 (dt, J = 7.6, 1.9 Hz, 1H), 7.62 – 7.57 (m, 2H), 7.47 – 7.31 (m, 5H), 7.24 (d, J = 7.9 Hz, 2H), 2.41 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 166.0, 142.5, 142.2, 140.7, 138.6, 132.1, 129.5, 129.5, 128.8, 127.6, 127.3, 127.2, 123.3, 119.3, 119.2, 21.6 ppm.

IR (film): *v*_{max} 3450, 2831, 1603, 1363, 1079, 894, 769, 700 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₂₀H₁₈NO [M+H]⁺, 288.1383; found, 288.1382.

jN-(3-Acetylphenyl)-4-methylbenzamide (3bk)

Prepared following **General Procedure A**, using 3-(*p*-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), 3-acetylphenylboronic acid (**2k**) (123.0 mg, 0.75 mmol, 3.0 equiv.), and CH₃CN (2.0 mL) at 140 °C. Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3bk** (62.1 mg, 98%) as a white solid.

TLC: $R_f = 0.18$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.26 (s, 1H), 8.16 (t, J = 1.9 Hz, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 7.9 Hz, 2H), 7.71 (dt, J = 7.7, 1.2 Hz, 1H), 7.46 (t, J = 7.9 Hz, 1H), 7.28 (d, J = 7.8 Hz, 2H), 2.60 (s, 3H), 2.42 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): *δ*_C 198.3, 166.1, 142.8, 138.8, 137.8, 131.8, 129.6, 129.5, 127.3, 125.0, 124.4, 119.8, 26.8, 21.7 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹¹

4-Methyl-N-[2-(methylthio)phenyl]benzamide (3bl)

Prepared following **General Procedure A**, using 3-(p-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), 2-methylthiophenylboronic acid (**1l**) (126.0 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 10 / 1) gave the title compound **3bl** (25.8 mg, 40%) as a white solid.

TLC: $R_f = 0.58$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 9.23 (s, 1H), 8.54 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.86 (d, *J* = 8.1 Hz, 2H), 7.41 – 7.29 (m, 3H), 7.10 (td, *J* = 7.6, 1.4 Hz, 1H), 2.44 (s, 3H), 2.41 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): $\delta_{\rm C}$ 165.3, 142.7, 138.9, 133.6, 132.2, 129.7, 129.4, 127.2, 125.4, 124.4, 120.5, 21.7, 19.4 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹²

4-Methyl-N-(3-vinylphenyl)benzamide (3bm)

Prepared following **General Procedure A**, using 3-(*p*-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), 4-Vinylphenylboronic acid (**2m**) (111.0 mg, 0.75 mmol, 3.0 equiv.), and CH₃CN (2.0 mL) at 140 °C. Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3bm** (43.1 mg, 73%) as a white solid.

TLC: $R_f = 0.33$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

M. p.: 120 – 121 °C.

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.04 (s, 1H), 7.86 – 7.66 (m, 3H), 7.54 (dd, J = 7.9, 2.2 Hz, 1H), 7.33 – 7.17 (m, 4H), 6.69 (dd, J = 17.6, 10.8 Hz, 1H), 5.77 (d, J = 17.6 Hz, 1H), 5.27 (d, J = 10.9 Hz, 1H), 2.41 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 166.0, 142.5, 138.6, 138.4, 136.6, 132.1, 129.5, 129.2, 127.2, 122.4, 119.8, 118.1, 114.6, 21.6 ppm.

IR (film): *v*_{max} 3458, 2928, 2831, 1608, 1549, 1515, 1466, 1364, 1869, 804, 776 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₆H₁₆NO [M+H]⁺, 238.1226; found, 238.1224.

4-Methyl-N-(3-nitrophenyl)benzamide (3bn)

Prepared following **General Procedure A**, using 3-(p-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), 3-nitrophenylboronic acid (**2n**) (125.2 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 10 / 1) gave the title compound **3ba** (17.9 mg, 28%) as a white solid.

TLC: $R_f = 0.34$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

NMR Spectroscopy (*see spectra*):

¹**H NMR** (400 MHz, *d*₆-DMSO): *δ*_H 10.62 (s, 1H), 8.81 (s, 1H), 8.20 (d, *J* = 8.1 Hz, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 2H), 7.65 (t, *J* = 8.2 Hz, 1H), 7.37 (d, *J* = 7.8 Hz, 2H), 2.40 (s, 3H) ppm;

¹³C NMR (101 MHz, *d*₆-DMSO): *δ*_C 165.8, 147.9, 142.2, 140.5, 131.3, 130.0, 129.0, 127.8, 126.1, 118.0, 114.3, 21.1 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹³

4-Methyl-N-[4-(trimethylsilyl)phenyl]benzamide (3bo)

Prepared following **General Procedure A**, using 3-(p-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), 4-(trimethylsilyl)phenylboronic acid (**2o**) (145.6 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3bo** (21.9 mg, 31%) as a white solid.

TLC: $R_f = 0.51$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹H NMR (400 MHz, *d*₆-DMSO): *δ*_H 10.17 (s, 1H), 7.93 – 7.83 (m, 2H), 7.83 – 7.72 (m, 2H), 7.53 – 7.43 (m, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 2.38 (s, 3H), 0.24 (s, 9H) ppm;
¹³C NMR (101 MHz, *d*₆-DMSO): *δ*_C 165.3, 141.6, 139.9, 134.2, 133.6, 132.0, 128.9, 127.7, 119.6,

21.0, -1.0 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹⁴

N-(Benzo[b]thiophen-3-yl)-4-methylbenzamide (3bp)

Prepared following **General Procedure A**, using 3-(p-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), benzothiophene-3-boronic acid (**2p**) (133.5 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3bp** (48.7 mg, 73%) as a white solid.

TLC: $R_f = 0.40$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

M. p.: 154 – 155 °C.

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.29 (s, 1H), 8.06 (s, 1H), 7.87 – 7.82 (m, 1H), 7.79 (d, *J* = 7.9 Hz, 2H), 7.69 – 7.61 (m, 1H), 7.42 – 7.34 (m, 2H), 7.26 (d, *J* = 7.9 Hz, 2H), 2.40 (s, 3H) ppm; ¹³**C** NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 165.5, 142.7, 138.1, 132.8, 131.5, 129.6, 128.6, 127.2, 125.0, 124.1, 123.4, 118.9, 113.0, 21.6 ppm.

IR (film): *v*_{max} 3273, 1646, 1612, 1547, 1509, 1456, 1434, 1299, 1185, 1079, 1021, 749, 729, 690 cm⁻¹. **HRMS** (ESI⁺): m/z calculated for C₁₆H₁₄NOS [M+H]⁺, 268.0791; found, 268.0796.

4-Methyl-N-(thiophen-3-yl)benzamide (3bq)

Prepared following **General Procedure B**, using 3-(p-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), 3-thiopheneboronic acid (**2q**) (96.0 mg, 0.75 mmol, 3.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL). Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3bq** (53.2 mg, 98%) as a light yellow solid.

TLC: $R_f = 0.40$ (Petroleum ether / EtOAc: 5 / 1, KMnO₄ stain).

M. p.: 187 – 188 °C.

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, d_6 -DMSO): δ_H 10.61 (s, 1H), 7.88 (d, J = 7.9 Hz, 2H), 7.74 (s, 1H), 7.51 – 7.43 (m, 1H), 7.39 – 7.25 (m, 3H), 2.38 (s, 3H) ppm;

¹³C NMR (101 MHz, *d*₆-DMSO): *δ*_C 164.3, 141.6, 137.1, 131.5, 129.0, 127.6, 124.4, 122.1, 109.3, 21.0 ppm.

IR (film): *v*_{max} 3250, 1634, 1585, 1531, 1407, 1390, 1370, 1351, 1303, 1290, 842, 830, 773, 735 cm⁻¹.

HRMS (ESI⁺): m/z calculated for $C_{12}H_{12}NOS$ [M+H]⁺, 218.0634; found, 218.0634.

N-Benzylthiophene-2-carboxamide (5aa)

Prepared following **General Procedure B**, using thiophene-2-boronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), benzylisocyanate (**4a**) (99.9 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM: 100%) gave the title compound **5aa** (49.4 mg, 91%) as a white solid.

Gram-scale reaction was conducted following **General Procedure B**, using thiophene-2-boronic acid (**2a**) (1.28 g, 10 mmol, 1.0 equiv.), benzylisocyanate (**4a**) (4.0 g, 30 mmol, 3.0 equiv.), and DCE (10.0 mL). Purification by flash column chromatography (DCM: 100%) gave the title compound **5aa** (1.33 g, 61%) as a white solid.

TLC: R_f = 0.35 (DCM: 100%, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.51 (dd, J = 3.7, 1.1 Hz, 1H), 7.48 (dd, J = 5.0, 1.2 Hz, 1H), 7.39 - 7.27 (m, 5H), 7.07 (dd, J = 5.0, 3.7 Hz, 1H), 6.30 (s, 1H), 4.62 (d, J = 5.8 Hz, 2H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): $\delta_{\rm C}$ 161.9, 138.9, 138.2, 130.2, 128.9, 128.3, 128.1, 127.8, 127.8, 44.2 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹

N-Benzylfuran-2-carboxamide (5ab)

Prepared following **General Procedure B**, using 2-furanboronic acid (**2b**) (28.0 mg, 0.25 mmol, 1.0 equiv.), benzylisocyanate (**4a**) (99.9 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash

column chromatography (DCM / EtOAc: 40 / 1) gave the title compound **5ab** (34.2 mg, 68%) as a white solid.

TLC: $R_f = 0.42$ (DCM / EtOAc: 20 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.43 – 7.40 (m, 1H), 7.37 – 7.33 (m, 4H), 7.33 – 7.27 (m, 1H), 7.15 (d, J = 3.5 Hz, 1H), 6.65 (brs, 1H), 6.50 (dd, J = 3.5, 1.8 Hz, 1H), 4.62 (d, J = 5.9 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): *δ*_C 158.4, 148.0, 144.0, 138.1, 128.9, 128.1, 127.8, 114.5, 112.3, 43.3 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹

N-Benzylthiophene-3-carboxamide (5ac)

Prepared following **General Procedure B**, using 3-thiopheneboronic acid (**2c**) (32.0 mg, 0.25 mmol, 1.0 equiv.), benzylisocyanate (**4a**) (99.9 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM / EtOAc: 40 / 1) gave the title compound **5ac** (25.5 mg, 47%) as a white solid.

TLC: $R_f = 0.43$ (DCM / EtOAc: 20 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.88 (dd, J = 3.0, 1.4 Hz, 1H), 7.43 – 7.29 (m, 7H), 6.28 (s, 1H), 4.62 (d, J = 5.7 Hz, 2H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): *δ*_C 163.1, 138.3, 137.4, 128.9, 128.5, 128.0, 127.7, 126.6, 126.2, 43.9 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹⁵

N-Benzyl-1-methyl-1H-indole-5-carboxamide (5ad)

Prepared following **General Procedure B**, using *N*-methylindole-5-boronic acid (**2d**) (43.7 mg, 0.25 mmol, 1.0 equiv.), benzylisocyanate (**4a**) (99.9 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM / EtOAc: 40 / 1) gave the title compound **5ad** (33.6 mg, 51%) as a pink solid.

TLC: $R_f = 0.47$ (DCM/EtOAc: 20 / 1, KMnO₄ stain).

M. p.: 127 – 129 °C.

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.11 (s, 1H), 7.71 (dd, J = 8.6, 1.8 Hz, 1H), 7.43 – 7.26 (m, 6H), 7.10 (d, J = 3.2 Hz, 1H), 6.59 – 6.47 (m, 2H), 4.68 (d, J = 5.6 Hz, 2H), 3.80 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 168.6, 138.8, 138.4, 130.4, 128.8, 128.1, 128.0, 127.6, 125.8, 120.8, 120.5, 109.2, 102.3, 44.2, 33.1 ppm.

IR (film): *v*_{max} 3362, 3056, 2936, 1792, 1633, 1524, 1483, 1454, 1341, 1296, 1272, 753, 730, 699 cm⁻¹.

HRMS (ESI⁺): m/z calculated for $C_{17}H_{17}N_2O$ [M+H]⁺, 265.1335; found, 265.1345.

N-Benzylbenzo[b]thiophene-3-carboxamide (5ae)

Prepared following **General Procedure B**, using benzo[*b*]thiophen-6-ylboronic acid (**2e**) (44.5 mg, 0.25 mmol, 1.0 equiv.), benzylisocyanate (**4a**) (99.9 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL).

Purification by flash column chromatography (DCM: 100%) gave the title compound **5ae** (54.4 mg, 81%) as a white solid.

TLC: $R_f = 0.42$ (DCM: 100%, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.43 – 8.36 (m, 1H), 7.90 – 7.82 (m, 2H), 7.49 – 7.23 (m, 7H), 6.47 (s, 1H), 4.66 (d, *J* = 5.7 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 164.0, 140.3, 138.2, 136.9, 132.0, 129.3, 128.9, 128.0, 127.8, 125.3, 125.3, 124.5, 122.7, 44.0 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹⁶

N -Benzyl-4-isopropylbenzamide (5af)

Prepared following **General Procedure B**, using 4-isopropylbenzeneboronic acid (**2f**) (41.0 mg, 0.25 mmol, 1.0 equiv.), benzylisocyanate (**4a**) (99.9 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM / EtOAc: 40 / 1) gave the title compound **5af** (28.5 mg, 45%) as a white solid.

TLC: R_f = 0.41 (DCM / EtOAc: 20 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.78 – 7.66 (m, 2H), 7.38 – 7.26 (m, 7H), 6.36 (s, 1H), 4.65 (d, *J* = 5.7 Hz, 2H), 2.95 (m, 1H), 1.25 (d, *J* = 6.9 Hz, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 167.4, 153.0, 138.4, 132.0, 128.9, 128.1, 127.7, 127.2, 126.8, 44.2, 34.2, 23.9 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹⁷

N-Benzyl-4-methoxybenzamide (5ag)

Prepared following **General Procedure B**, using 4-methoxyphenylboronic acid (**2g**) (38.0 mg, 0.25 mmol, 1.0 equiv.), benzylisocyanate (**4a**) (99.9 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM / EtOAc: 40 / 1) gave the title compound **5ag** (46.7 mg, 77%) as a white solid.

TLC: $R_f = 0.52$ (DCM / EtOAc: 20 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.83 – 7.70 (m, 2H), 7.38 – 7.26 (m, 5H), 6.97 – 6.84 (m, 2H), 6.42 (s, 1H), 4.62 (d, *J* = 5.7 Hz, 2H), 3.84 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 167.0, 162.3, 138.5, 128.9, 128.9, 128.0, 127.7, 126.8, 113.9, 55.5, 44.2 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹

N-Benzyl-4-ethoxybenzamide (5ah)

Prepared following **General Procedure B**, using 4-ethoxybenzeneboronic acid (**2h**) (41.5 mg, 0.25 mmol, 1.0 equiv.), benzylisocyanate (**4a**) (99.9 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM / EtOAc: 40 / 1) gave the title compound **5ah** (41.2 mg, 65%) as a white solid.

TLC: $R_f = 0.50$ (DCM / EtOAc: 20 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹H NMR (400 MHz, CDCl₃): δ_H 7.79 – 7.71 (m, 2H), 7.36 – 7.26 (m, 5H), 6.94 – 6.83 (m, 2H),
6.47 (s, 1H), 4.61 (d, J = 5.7 Hz, 2H), 4.06 (q, J = 7.0 Hz, 2H), 1.42 (t, J = 7.0 Hz, 3H) ppm;
¹³C NMR (101 MHz, CDCl₃): δ_C 167.0, 161.7, 138.6, 128.9, 128.8, 128.0, 127.6, 126.5, 114.3,
63.8, 44.1, 14.8 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹⁸

N-Benzyl-4-[(tert-butyldimethylsilyl)oxy]benzamide (5ai)

Prepared following **General Procedure B**, using 4-(*tert*-butyldimethylsilyloxy)phenylboronic acid (**2i**) (63.0 mg, 0.25 mmol, 1.0 equiv.), benzylisocyanate (**4a**) (99.9 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM / EtOAc: 40 / 1) gave the title compound **5ai** (52.7 mg, 62%) as a white solid.

TLC: $R_f = 0.52$ (DCM / EtOAc: 20 / 1, KMnO₄ stain).

M. p.: 105 – 107 °C.

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.75 – 7.66 (m, 2H), 7.37 – 7.24 (m, 5H), 6.88 – 6.80 (m, 2H), 6.55 (s, 1H), 4.60 (d, *J* = 5.7 Hz, 2H), 0.98 (s, 9H), 0.21 (s, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 167.1, 158.9, 138.6, 128.9, 128.8, 128.0, 127.6, 127.4, 120.1,
44.1, 25.7, 18.3, -4.3 ppm.

IR (film): *v*_{max} 3313, 2928, 1630, 1605, 1556, 1503, 1249, 1175, 908, 859, 836, 777, 717, 694 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₂₀H₂₈NO₂Si [M+H]⁺, 342.1883; found, 342.1887.

N-Benzyl-4-(methylthio)benzamide (5aj)

Prepared following **General Procedure B**, using 4-(methylthiophenyl)boronic acid (**2j**) (42.0 mg, 0.25 mmol, 1.0 equiv.), benzylisocyanate (**4a**) (99.9 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM / EtOAc: 40 / 1) gave the title compound **5aj** (33.8 mg, 53%) as a white solid.

TLC: $R_f = 0.65$ (DCM / EtOAc: 20 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹H NMR (400 MHz, CDCl₃): δ_H 7.74 – 7.66 (m, 2H), 7.37 – 7.25 (m, 5H), 7.25 – 7.20 (m, 2H), 6.57 (s, 1H), 4.61 (d, J = 5.7 Hz, 2H), 2.49 (s, 3H) ppm;
¹³C NMR (101 MHz, CDCl₃): δ_C 167.0, 143.6, 138.4, 130.5, 128.9, 128.0, 127.7, 127.5, 125.5, 44.2, 15.1 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹⁹

N-Benzyl-4-phenoxybenzamide (5ak)

Prepared following **General Procedure B**, using 4-phenoxyphenyl boronic acid (**2k**) (53.5 mg, 0.25 mmol, 1.0 equiv.), benzylisocyanate (**4a**) (99.9 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM / EtOAc: 40 / 1) gave the title compound **5ak** (31.5 mg, 42%) as a white solid.

TLC: $R_f = 0.69$ (DCM / EtOAc: 20 / 1, KMnO₄ stain).

M. p.: 176 – 177 °C.

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, d_6 -DMSO): $\delta_{\rm H}$ 9.02 (s, 1H), 7.98 – 7.91 (m, 2H), 7.50 – 7.38 (m, 2H),

7.36 – 7.17 (m, 6H), 7.12 – 6.99 (m, 4H), 4.48 (d, *J* = 6.0 Hz, 2H) ppm;

¹³C NMR (101 MHz, *d*₆-DMSO): δ_C 165.4, 159.4, 155.6, 139.8, 130.2, 129.5, 129.0, 128.3, 127.2, 126.7, 124.3, 119.5, 117.4, 42.6 ppm.

IR (film): v_{max} 3422, 1629, 1586, 1556, 1484, 1236, 1195, 1172, 868, 854, 753, 728, 694 cm⁻¹.

HRMS (ESI⁺): m/z calculated for $C_{20}H_{18}NO_2$ [M+H]⁺ 304.1332; found, 304.1339.

N-Benzyl-2,3-dihydrobenzo[*b*][1,4]dioxine-6-carboxamide (5al)

Prepared following **General Procedure B**, using 1,4-benzodioxane-6-boronic acid (**2l**) (45.0 mg, 0.25 mmol, 1.0 equiv.), benzylisocyanate (**4a**) (99.9 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM / EtOAc: 40 / 1) gave the title compound **5al** (39.7 mg, 59%) as a white solid.

TLC: $R_f = 0.38$ (DCM / EtOAc: 20 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, *d*₆-DMSO): *δ*_H 8.89 (s, 1H), 7.49 – 7.39 (m, 2H), 7.37 – 7.15 (m, 5H), 6.92 (d, J = 8.3 Hz, 1H), 4.45 (d, J = 5.9 Hz, 2H), 4.28 (s, 4H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): *δ*_C 166.8, 146.6, 143.5, 138.5, 128.8, 128.0, 127.8, 127.6, 120.5, 117.3, 116.7, 64.6, 64.3, 44.2 ppm.

All recorded spectroscopic data matched those previously reported in the literature.²⁰

N-benzylbenzo[*d*][1,3]dioxole-5-carboxamide (5am)

Prepared following **General Procedure B**, using 1,3-benzodioxol-5-ylboronic acid (**2m**) (41.5 mg, 0.25 mmol, 1.0 equiv.), benzylisocyanate (**4a**) (99.9 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM / EtOAc: 40 / 1) gave the title compound **5am** (48.3 mg, 76%) as a white solid.

TLC: $R_f = 0.56$ (DCM / EtOAc: 20 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹H NMR (400 MHz, CDCl₃): δ_H 7.37 – 7.26 (m, 7H), 6.78 (d, J = 8.0 Hz, 1H), 6.56 (d, J = 4.3 Hz, 1H), 5.99 (s, 2H), 4.58 (d, J = 5.7 Hz, 2H) ppm;
¹³C NMR (101 MHz, CDCl₃): δ_C 166.8, 150.4, 148.0, 138.4, 128.8, 128.7, 127.9, 127.6, 121.7, 108.1, 107.8, 101.8, 44.2 ppm.

All recorded spectroscopic data matched those previously reported in the literature.²¹

N-Benzyl-2,4-dimethoxybenzamide (5an)

Prepared following **General Procedure B**, using 2,4-dimethoxyphenylboronic acid (**2n**) (45.5 mg, 0.25 mmol, 1.0 equiv.), benzylisocyanate (**4a**) (99.9 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM / EtOAc: 40 / 1) gave the title compound **5an** (44.2 mg, 70%) as a white solid.

TLC: $R_f = 0.49$ (DCM / EtOAc: 20 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):
¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.23 (d, J = 8.8 Hz, 1H), 8.10 (s, 1H), 7.41 – 7.22 (m, 5H), 6.61 (dd, J = 8.8, 2.3 Hz, 1H), 6.47 (d, J = 2.3 Hz, 1H), 4.67 (d, J = 5.7 Hz, 2H), 3.88 (s, 3H), 3.84 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 165.3, 163.5, 158.9, 139.2, 134.2, 128.7, 127.6, 127.3, 114.5, 105.3, 98.7, 56.0, 55.6, 43.7 ppm.

All recorded spectroscopic data matched those previously reported in the literature.²²

N-Benzyl-1-naphthamide (5ao)

Prepared following **General Procedure B**, using 1-naphthylboronic acid (**20**) (43.0 mg, 0.25 mmol, 1.0 equiv.), benzylisocyanate (**4a**) (99.9 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM: 100%) gave the title compound **5ao** (26.8 mg, 41%) as a pink solid.

TLC: $R_f = 0.35$ (DCM: 100%, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.35 (dd, J = 7.8, 1.8 Hz, 1H), 7.95 – 7.82 (m, 2H), 7.64 – 7.50 (m, 3H), 7.46 – 7.28 (m, 6H), 6.33 (s, 1H), 4.72 (d, J = 5.8 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 169.5, 138.2, 134.4, 133.8, 130.8, 130.3, 129.0, 128.4, 128.0, 127.8, 127.3, 126.6, 125.5, 125.0, 124.8, 44.2 ppm.

All recorded spectroscopic data matched those previously reported in the literature.²³

N-Benzylcinnamamide (5ap)

5ap S36

Prepared following **General Procedure B**, using (*E*)-styrylboronic acid (**2p**) (37.0 mg, 0.25 mmol, 1.0 equiv.), benzylisocyanate (**4a**) (99.9 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM / EtOAc: 40 / 1) gave the title compound **5ap** (19.0 mg, 32%) as a white solid.

TLC: $R_f = 0.46$ (DCM / EtOAc: 20 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹H NMR (400 MHz, CDCl₃): δ_H 7.68 (d, J = 15.6 Hz, 1H), 7.55 – 7.47 (m, 2H), 7.43 – 7.26 (m, 8H), 6.41 (d, J = 15.6 Hz, 1H), 5.94 (s, 1H), 4.58 (d, J = 5.8 Hz, 2H) ppm;
¹³C NMR (101 MHz, CDCl₃): δ_C 165.9, 141.5, 138.3, 134.9, 129.8, 128.9, 128.9, 128.0, 127.9, 127.7, 120.6, 44.0 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹

N-(*p*-Tolyl)thiophene-2-carboxamide (5ba)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), *p*-tolyl isocyanate (**4b**) (99.9 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (Petroleum ether / DCM: 2 / 3) gave the title compound **5ba** (42.9 mg, 79%) as a white solid.

TLC: $R_f = 0.29$ (Petroleum ether / DCM: 2 / 3, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.71 (s, 1H), 7.61 (dd, J = 3.7, 1.1 Hz, 1H), 7.53 (dd, J = 5.0, 1.2 Hz, 1H), 7.51 – 7.46 (m, 2H), 7.15 (d, J = 8.1 Hz, 2H), 7.11 (dd, J = 5.0, 3.7 Hz, 1H), 2.33 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 160.0, 139.5, 135.1, 134.5, 130.7, 129.7, 128.5, 127.9, 120.5, 21.0

ppm.

All recorded spectroscopic data matched those previously reported in the literature.²⁴

N-(4-Methoxyphenyl)thiophene-2-carboxamide (5ca)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), 4-methoxyphenyl isocyanate (**4c**) (97.2 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (Petroleum ether / DCM / EtOAc: 4 / 2 / 1) gave the title compound **5ca** (41.6 mg, 71%) as a brown powder.

TLC: $R_f = 0.42$ (Petroleum ether / DCM / EtOAc: 4 / 2 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.79 (s, 1H), 7.61 (dd, J = 3.7, 1.2 Hz, 1H), 7.53 – 7.47 (m, 3H), 7.09 (dd, J = 5.0, 3.7 Hz, 1H), 6.90 – 6.84 (m, 2H), 3.80 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): $\delta_{\rm C}$ 160.1, 156.8, 139.4, 130.7, 130.6, 128.5, 127.9, 122.4, 114.3, 55.6 ppm.

All recorded spectroscopic data matched those previously reported in the literature.²⁵

N-(4-Phenoxyphenyl)thiophene-2-carboxamide (5da)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), 4-phenoxyphenyl isocyanate (**4d**) (158.4 mg, 0.75 mmol, 3.0 equiv.), and

DCE (1.0 mL). Purification by flash column chromatography (Petroleum ether / DCM / EtOAc: 8 / 4 / 1) gave the title compound **5da** (72.3 mg, 98%) as a white solid. **TLC**: $R_f = 0.40$ (Petroleum ether / DCM / EtOAc: 8 / 4 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, *d*₆-DMSO): $\delta_{\rm H}$ 10.27 (s, 1H), 8.02 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.84 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.79 – 7.71 (m, 2H), 7.42 – 7.33 (m, 2H), 7.22 (dd, *J* = 5.0, 3.7 Hz, 1H), 7.15 – 7.08 (m, 1H), 7.07 – 6.95 (m, 4H). ppm; ¹³**C NMR** (101 MHz, *d*₆-DMSO): $\delta_{\rm C}$ 159.7, 157.2, 152.3, 140.0, 134.5, 131.7, 130.0, 129.0, 128.0,

123.1, 122.1, 119.2, 118.0 ppm.

All recorded spectroscopic data matched those previously reported in the literature.²⁶

N-[4-(Trifluoromethoxy)phenyl]thiophene-2-carboxamide (5ea)

TLC: $R_f = 0.65$ (Petroleum ether / DCM: 2 / 3, KMnO₄ stain).

M. p.: 138 – 139 °C.

NMR Spectroscopy (see spectra):

¹H NMR (400 MHz, *d₆*-DMSO): *δ*_H 10.4 (s, 1H), 8.0 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.9 – 7.8 (m, 3H),
7.4 (d, *J* = 8.3 Hz, 2H), 7.2 (dd, *J* = 5.0, 3.8 Hz, 1H) ppm;

¹³**C NMR** (101 MHz, d_6 -DMSO): δ_C 160.0, 143.9 (q, ${}^{3}J_{C-F} = 2.2$ Hz), 139.6, 138.0, 132.1, 129.4, 128.1, 121.7, 121.5, 120.2 (q, ${}^{1}J_{C-F} = 255.6$ Hz) ppm;

¹⁹**F NMR** (376 MHz, *d*₆-DMSO): *δ*_F -57.11 ppm.

IR (film): *v*_{max} 3425, 2934, 2832, 2718, 1593, 1360, 1032, 776, 607, 516 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₂H₉F₃NO₂S [M+H]⁺, 288.0301; found, 288.0295.

N-(3-Chloro-4-methylphenyl)thiophene-2-carboxamide (5fa)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), 3-chloro-4-methylphenyl isocyanate (**4f**) (125.7 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (Petroleum ether / DCM / EtOAc: 8 / 4 / 1) gave the title compound **5fa** (57.3 mg, 91%) as a white solid.

TLC: $R_f = 0.40$ (Petroleum ether / DCM / EtOAc: 8 / 4 / 1, KMnO₄ stain).

M. p.: 135 – 136 °C.

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.79 (s, 1H), 7.68 (d, J = 2.2 Hz, 1H), 7.62 (d, J = 3.8 Hz, 1H), 7.54 (d, J = 5.0 Hz, 1H), 7.38 (dd, J = 8.3, 2.3 Hz, 1H), 7.17 (d, J = 8.3 Hz, 1H), 7.13 – 7.07 (m, 1H), 2.33 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 160.1, 139.1, 136.4, 134.7, 132.4, 131.2, 131.1, 128.7, 128.0, 121.0, 118.7, 19.6 ppm.

IR (film): v_{max} 3305, 3206, 1635, 1588, 1513, 1446, 1422, 1310, 1258, 1048, 926, 839, 812, 708 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₂H₁₁ClNOS [M+H]⁺, 252.0244; found, 252.0252.

N-(4-Chlorophenyl)thiophene-2-carboxamide (5ga)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), 4-chlorophenyl isocyanate (**5g**) (115.2 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (Petroleum ether / DCM: 1 / 1) gave the title compound **5ga** (47.0 mg, 79%) as a white solid.

TLC: $R_f = 0.35$ (Petroleum ether / DCM: 1 / 2, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, d_6 -DMSO): $\delta_{\rm H}$ 10.35 (s, 1H), 8.03 (d, J = 3.8 Hz, 1H), 7.87 (d, J = 5.0 Hz,

1H), 7.78 (d, *J* = 8.5 Hz, 2H), 7.41 (d, *J* = 8.5 Hz, 2H), 7.23 (m, 1H) ppm;

¹³**C NMR** (101 MHz, *d*₆-DMSO): *δ*_C 160.4, 140.2, 138.2, 132.6, 129.8, 129.1, 128.6, 127.9, 122.3 ppm.

All recorded spectroscopic data matched those previously reported in the literature.²⁷

N-(4-Fluorophenyl)thiophene-2-carboxamide (5ha)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), 4-fluorophenyl isocyanate (**4h**) (102.8 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (Petroleum ether / DCM / EtOAc: 6/3/1) gave the title compound **5ha** (38.2 mg, 69%) as a white solid.

TLC: $R_f = 0.31$ (Petroleum ether / DCM / EtOAc: 6 / 3 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.10 (s, 1H), 7.65 (dd, J = 3.8, 1.2 Hz, 1H), 7.59 – 7.48 (m, 3H), 7.07 (dd, J = 5.0, 3.7 Hz, 1H), 7.04 – 6.94 (m, 2H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): $\delta_{\rm C}$ 160.3, 159.7 (d, ${}^{1}J_{\rm C-F} = 245.4$ Hz), 139.1, 133.7 (d, ${}^{4}J_{\rm C-F} = 3.0$ Hz), 131.0, 128.7, 128.0, 122.5 (d, ${}^{3}J_{\rm C-F} = 8.1$ Hz), 115.8 (d, ${}^{2}J_{\rm C-F} = 23.2$ Hz) ppm;

¹⁹**F NMR** (376 MHz, CDCl₃): $\delta_{\rm F}$ -117.43 ppm.

All recorded spectroscopic data matched those previously reported in the literature.²⁸

N-(3,4-Dichlorophenyl)thiophene-2-carboxamide (5ia)

5ia

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), 3,4-dichlorophenylisocyanate (**4i**) (141.0 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (Petroleum ether / DCM: 1 / 1) gave the title compound **5ia** (60.3 mg, 89%) as a white solid.

TLC: $R_f = 0.26$ (Petroleum ether / DCM: 1 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.88 (s, 1H), 7.83 (d, J = 2.5 Hz, 1H), 7.64 (dd, J = 3.8, 1.2 Hz, 1H), 7.57 (dd, J = 5.0, 1.2 Hz, 1H), 7.48 – 7.35 (m, 2H), 7.12 (dd, J = 5.0, 3.7 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): $\delta_{\rm C}$ 160.2, 138.6, 137.2, 133.0, 131.6, 130.7, 129.1, 128.1, 128.0, 122.1, 119.6 ppm.

All recorded spectroscopic data matched those previously reported in the literature.²⁹

N-[4-(Trifluoromethyl)phenyl]thiophene-2-carboxamide (5ja)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), 4-(trifluoromethyl)phenylisocyanate (**4j**) (140.3 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (Petroleum ether / DCM: 1 / 1) gave the title compound **5ja** (60.3 mg, 89%) as a white solid.

TLC: $R_f = 0.39$ (Petroleum ether / DCM: 1 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, d_6 -DMSO): δ_H 10.54 (s, 1H), 8.08 (dd, J = 3.8, 1.2 Hz, 1H), 7.98 (d, J = 8.5 Hz, 2H), 7.89 (dd, J = 5.0, 1.1 Hz, 1H), 7.71 (d, J = 8.6 Hz, 2H), 7.24 (dd, J = 5.0, 3.8 Hz, 1H) ppm;

¹³**C NMR** (101 MHz, d_6 -DMSO): δ_C 160.3, 142.5, 139.4, 132.5, 129.8, 128.2, 126.0 (q, ${}^{3}J_{C-F} = 3.8$ Hz), 124.4 (q, ${}^{1}J_{C-F} = 272.0$ Hz), 123.7 (q, ${}^{2}J_{C-F} = 32.0$ Hz), 120.1 ppm.

¹⁹**F NMR** (376 MHz, d_6 -DMSO): δ_F -60.43 ppm.

All recorded spectroscopic data matched those previously reported in the literature.³⁰

Ethyl 4-(thiophene-2-carboxamido)benzoate (5ka)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), ethyl 4-isocyanatobenzoate (**4k**) (143.4 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (Petroleum ether / DCM: 1 / 5) gave the title compound **5ka** (67.4 mg, 98%) as a white solid.

TLC: $R_f = 0.21$ (Petroleum ether / DCM: 1 / 5, KMnO₄ stain).

M. p.: 183 – 185 °C.

NMR Spectroscopy (see spectra):

¹H NMR (400 MHz, *d*₆-DMSO): *δ*_H 10.51 (s, 1H), 8.08 (dd, *J* = 3.9, 1.2 Hz, 1H), 8.03 – 7.80 (m, 5H), 7.24 (dd, *J* = 5.0, 3.8 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H) ppm;

¹³C NMR (101 MHz, *d*₆-DMSO): *δ*_C 165.3, 160.2, 143.2, 139.5, 132.5, 130.1, 129.7, 128.1, 124.6, 119.5, 60.4, 14.2 ppm.

IR (film): *v*_{max} 3361, 3091, 1667, 1594, 1529, 1473, 1418, 1310, 1286, 1250, 866, 794, 771, 730 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₄H₁₄NO₃S [M+H]⁺, 276.0689; found, 276.0692.

N-(4-Acetylphenyl)thiophene-2-carboxamide (5la)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), 4-acetylphenyl isocyanate (**4l**) (120.9 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM / EtOAc: 20 / 1) gave the title compound **5la** (39.9 mg, 65%) as a white solid.

TLC: R_f = 0.40 (DCM / EtOAc: 20 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹H NMR (400 MHz, *d₆*-DMSO): *δ*_H 10.46 (s, 1H), 8.03 (dd, *J* = 3.8, 1.1 Hz, 1H), 7.96 - 7.82 (m, 5H), 7.20 (dd, *J* = 5.0, 3.8 Hz, 1H), 2.54 (s, 3H) ppm;

¹³C NMR (101 MHz, *d*₆-DMSO): *δ*_C 196.6, 160.2, 143.2, 139.5, 132.5, 132.0, 129.7, 129.3, 128.2, 119.4, 26.4 ppm.

All recorded spectroscopic data matched those previously reported in the literature.³¹

N-(m-Tolyl)thiophene-2-carboxamide (5ma)

5ma

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), *m*-tolyl isocyanate (**4m**) (100.0 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (Petroleum ether / DCM / EtOAc: 8 / 4 / 1) gave the title compound **5ma** (28.3 mg, 52%) as a white solid.

TLC: $R_f = 0.30$ (Petroleum ether / DCM / EtOAc: 8 / 4 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.93 (s, 1H), 7.64 (dd, J = 3.7, 1.1 Hz, 1H), 7.51 (dd, J = 5.0, 1.2 Hz, 1H), 7.47 (s, 1H), 7.40 (d, J = 7.9 Hz, 1H), 7.21 (t, J = 7.8 Hz, 1H), 7.08 (dd, J = 5.0, 3.7 Hz, 1H), 6.94 (d, J = 7.5 Hz, 1H), 2.32 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 160.2, 139.5, 139.1, 137.6, 130.8, 129.0, 128.6, 127.9, 125.5, 121.1, 117.6, 21.6 ppm.

All recorded spectroscopic data matched those previously reported in the literature.³²

N-(3,5-Dimethylphenyl)thiophene-2-carboxamide (5na)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), 3,5-dimethylphenyl isocyanate (**4n**) (105.6 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (Petroleum ether / DCM: 1 / 1) gave the title compound **5na** (52.2 mg, 90%) as a white solid.

TLC: $R_f = 0.28$ (Petroleum ether / DCM: 1 / 1, KMnO₄ stain).

M. p.: 136 – 137 °C.

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.94 (s, 1H), 7.65 (dd, J = 3.7, 1.2 Hz, 1H), 7.50 (dd, J = 5.0, 1.2 Hz, 1H), 7.24 (s, 2H), 7.07 (dd, J = 5.0, 3.7 Hz, 1H), 6.76 (s, 1H), 2.27 (s, 6H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): *δ*_C 160.2, 139.6, 138.8, 137.5, 130.7, 128.5, 127.9, 126.4, 118.3, 21.4 ppm.

IR (film): *v*_{max} 3290, 2914, 1635, 1535, 1353, 1294, 1248, 1174, 851, 829, 726, 714, 689, 614 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₃H₁₄NOS [M+H]⁺, 232.0790; found, 232.0798.

N-(3-Bromophenyl)thiophene-2-carboxamide (50a)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), 3-bromophenyl isocyanate (**4o**) (148.5 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (Petroleum ether / DCM / EtOAc: 8 / 4 / 1) gave the title compound **5oa** (63.5 mg, 90%) as a white solid.

TLC: $R_f = 0.32$ (Petroleum ether / DCM / EtOAc: 8 / 4 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.86 (s, 1H), 7.77 (s, 1H), 7.63 (dd, J = 3.8, 1.2 Hz, 1H), 7.56 (dd, J = 5.0, 1.1 Hz, 1H), 7.53 (d, J = 8.2 Hz, 1H), 7.27 – 7.19 (m, 2H), 7.12 (dd, J = 5.0, 3.7 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃): *δ*_C 160.1, 138.9, 138.9, 131.4, 130.5, 128.9, 128.1, 127.7, 123.3, 122.8, 118.8 ppm.

All recorded spectroscopic data matched those previously reported in the literature.³³

N-(o-Tolyl)thiophene-2-carboxamide (5pa)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), *o*-tolyl isocyanate (**4p**) (100.0 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (Petroleum ether / DCM / EtOAc: 8 / 4 / 1) gave the title compound **5pa** (41.8 mg, 77%) as a white solid.

TLC: $R_f = 0.37$ (Petroleum ether / DCM / EtOAc: 8 / 4 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹H NMR (400 MHz, CDCl₃): δ_H 7.85 (d, J = 8.0 Hz, 1H), 7.63 (d, J = 3.7 Hz, 2H), 7.54 (dd, J = 5.0, 1.2 Hz, 1H), 7.27 – 7.20 (m, 2H), 7.16 – 7.08 (m, 2H), 2.32 (s, 3H) ppm;
¹³C NMR (101 MHz, CDCl₃): δ_C 160.1, 139.2, 135.5, 130.7, 130.7, 129.6, 128.7, 128.0, 127.0, 125.7, 123.5, 17.9 ppm.

All recorded spectroscopic data matched those previously reported in the literature.³⁴

N-(2-Chlorophenyl)thiophene-2-carboxamide (5qa)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), 2-chlorophenyl isocyanate (**4q**) (115.2 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL).

Purification by flash column chromatography (Petroleum ether / DCM: 1 / 1) gave the title compound **5qa** (52.1 mg, 88%) as a white solid.

TLC: $R_f = 0.30$ (Petroleum ether / DCM: 1 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.48 (dd, *J* = 8.3, 1.6 Hz, 1H), 8.31 (s, 1H), 7.66 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.58 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.40 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.31 (td, *J* = 7.9, 1.5 Hz, 1H), 7.15 (dd, *J* = 5.0, 3.8 Hz, 1H), 7.07 (td, *J* = 7.7, 1.6 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): $\delta_{\rm C}$ 159.8, 139.2, 134.6, 131.4, 129.1, 128.8, 128.1, 128.0, 124.9, 122.9, 121.6 ppm.

All recorded spectroscopic data matched those previously reported in the literature.35

N-(Naphthalen-1-yl)thiophene-2-carboxamide (5ra)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), 1-naphthyl isocyanate (**4r**) (126.9 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (Petroleum ether / DCM: 1 / 2) gave the title compound **5ra** (42.2 mg, 67%) as a pink solid.

TLC: $R_f = 0.28$ (Petroleum ether / DCM: 1 / 2, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, *d*₆-DMSO): *δ*_H 10.48 (s, 1H), 8.15 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.98 (dd, *J* = 6.3, 3.3 Hz, 2H), 7.91 – 7.85 (m, 2H), 7.61 – 7.52 (m, 4H), 7.27 (dd, *J* = 5.0, 3.7 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, *d*₆-DMSO): *δ*_C 160.7, 139.7, 133.8, 133.2, 131.7, 129.3, 129.2, 128.2, 128.1, 126.5, 126.2, 126.1, 125.6, 124.1, 123.3 ppm.

All recorded spectroscopic data matched those previously reported in the literature.³⁶

N-Cyclopentylthiophene-2-carboxamide (5sa)

5sa

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), cyclopentyl isocyanate (**4s**) (83.4 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM: 100%) gave the title compound **5sa** (47.8 mg, 98%) as a white solid.

TLC: $R_f = 0.41$ (DCM: 100%, KMnO₄ stain).

M. p.: 178 – 180 °C.

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.48 (d, J = 3.7 Hz, 1H), 7.43 (d, J = 5.0 Hz, 1H), 7.04 (dd, J = 5.0, 3.8 Hz, 1H), 6.02 (s, 1H), 4.35 (q, J = 7.1 Hz, 1H), 2.15 – 1.98 (m, 2H), 1.77 – 1.57 (m, 4H), 1.53 – 1.42 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 161.7, 139.5, 129.7, 127.9, 127.6, 51.9, 33.3, 23.9 ppm.

IR (film): *v*_{max} 3103, 2960, 2864, 1612, 1421, 1362, 1317, 1290, 1245, 1187, 935, 860, 777, 731 cm⁻¹.

HRMS (ESI⁺): m/z calculated for $C_{10}H_{14}NOS$ [M+H]⁺, 196.0791; found, 196.0797.

N-Cyclohexylthiophene-2-carboxamide (5ta)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), cyclohexyl isocyanate (**4t**) (148.5 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification

by flash column chromatography (Petroleum ether / EtOAc: 4/1) gave the title compound **5ta** (50.5 mg, 97%) as a white solid.

TLC: $R_f = 0.52$ (Petroleum ether / EtOAc: 2 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.49 (dd, J = 3.7, 1.2 Hz, 1H), 7.43 (dd, J = 5.0, 1.2 Hz, 1H), 7.03 (dd, J = 5.0, 3.7 Hz, 1H), 6.14 – 5.94 (m, 1H), 3.99 – 3.85 (m, 1H), 2.05 – 1.95 (m, 2H), 1.78 – 1.67 (m, 2H), 1.67 – 1.56 (m, 1H), 1.47 – 1.29 (m, 2H), 1.29 – 1.08 (m, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 161.1, 139.6, 129.7, 127.8, 127.6, 48.9, 33.3, 25.6, 25.0 ppm.

All recorded spectroscopic data matched those previously reported in the literature.³⁷

N-Ethylthiophene-2-carboxamide (5ua)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), ethyl isocyanate (**4u**) (53.3 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM / EtOAc: 40 / 1) gave the title compound **5ua** (29.3 mg, 76%) as a white solid.

TLC: $R_f = 0.40$ (DCM / EtOAc: 20 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.51 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.44 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.05 (dd, *J* = 5.0, 3.7 Hz, 1H), 6.21 (s, 1H), 3.46 (qd, *J* = 7.2, 5.6 Hz, 2H), 1.23 (t, *J* = 7.3 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): $\delta_{\rm C}$ 162.0, 139.3, 129.8, 127.9, 127.7, 35.0, 15.0 ppm.

All recorded spectroscopic data matched those previously reported in the literature.³⁸

N-Isopropylthiophene-2-carboxamide (5va)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), isopropyl isocyanate (**4v**) (63.8 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM: 100%) gave the title compound **5va** (36.2 mg, 86%) as a white solid.

TLC: R_f = 0.46 (DCM: 100%, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.52 (dd, J = 3.6, 1.7 Hz, 1H), 7.45 (dd, J = 5.1, 1.8 Hz, 1H), 7.06 (dd, J = 5.0, 3.7 Hz, 1H), 6.04 (s, 1H), 4.34 – 4.19 (m, 1H), 1.26 (d, J = 6.6 Hz, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 161.2, 139.6, 129.7, 127.8, 127.6, 42.1, 22.9 ppm.

All recorded spectroscopic data matched those previously reported in the literature.³⁹

N-Butylthiophene-2-carboxamide (5wa)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), butyl isocyanate (**4w**) (74.3 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM / EtOAc: 40 / 1) gave the title compound **5wa** (42.7 mg, 93%) as a white solid.

TLC: $R_f = 0.48$ (DCM / EtOAc: 20 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.52 (dd, J = 3.7, 1.2 Hz, 1H), 7.43 (dd, J = 5.0, 1.2 Hz, 1H), 7.04 (dd, J = 5.0, 3.7 Hz, 1H), 6.33 (brs, 1H), 3.40 (td, J = 7.2, 5.8 Hz, 2H), 1.62 – 1.51 (m, 2H), 1.43 –

1.31 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 162.1, 139.4, 129.7, 127.9, 127.6, 39.9, 31.8, 20.2, 13.9 ppm.

All recorded spectroscopic data matched those previously reported in the literature.⁴⁰

N-(tert-Butyl)thiophene-2-carboxamide (5xa)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), *tert*-butylisocyanate (**4x**) (74.3 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM: 100%) gave the title compound **5xa** (32.1 mg, 70%) as a white solid.

TLC: R_f = 0.56 (DCM: 100%, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.45 – 7.37 (m, 2H), 7.03 (dd, J = 4.8, 3.9 Hz, 1H), 5.92 – 5.70 (brs, 1H), 1.45 (s, 9H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 161.4, 140.6, 129.5, 127.6, 127.5, 52.1, 29.0 ppm.

All recorded spectroscopic data matched those previously reported in the literature.⁴¹

N-Hexylthiophene-2-carboxamide (5ya)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), hexyl isocyanate (**4y**) (95.4 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash

column chromatography (Petroleum ether / EtOAc: 4 / 1) gave the title compound **5ya** (49.7 mg, 94%) as a white solid.

TLC: $R_f = 0.55$ (Petroleum ether / EtOAc: 2 / 1, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.52 (dd, J = 3.7, 1.2 Hz, 1H), 7.43 (dd, J = 5.0, 1.2 Hz, 1H), 7.04 (dd, J = 5.0, 3.7 Hz, 1H), 6.34 (s, 1H), 3.39 (td, J = 7.3, 5.8 Hz, 2H), 1.58 (ddd, J = 14.8, 8.1, 6.5 Hz, 2H), 1.36 – 1.25 (m, 6H), 0.94 – 0.81 (m, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): $\delta_{\rm C}$ 162.1, 139.4, 129.7, 127.9, 127.6, 40.2, 31.6, 29.7, 26.7, 22.6, 14.1 ppm.

All recorded spectroscopic data matched those previously reported in the literature.⁴²

N-Phenethylthiophene-2-carboxamide (5za)

Prepared following **General Procedure B**, using 2-thiopheneboronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), phenethyl isocyanate (**4z**) (110.4 mg, 0.75 mmol, 3.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM: 100%) gave the title compound **5za** (53.2 mg, 92%) as a white solid.

TLC: R_f = 0.45 (DCM: 100%, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.44 (d, J = 4.4 Hz, 2H), 7.35 – 7.27 (m, 2H), 7.27 – 7.18 (m, 3H), 7.08 – 7.00 (m, 1H), 6.31 (s, 1H), 3.73 – 3.60 (m, 2H), 2.91 (t, J = 7.1 Hz, 2H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): $\delta_{\rm C}$ 162.0, 139.2, 138.9, 129.9, 128.9, 128.8, 128.0, 127.7, 126.7, 41.3, 35.8 ppm.

All recorded spectroscopic data matched those previously reported in the literature.⁴³

3. MECHANISTIC STUDIES

3.1. Additional experiment

To a 10 mL vial equipped with a magnetic stir bar was added 3-(*p*-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), 2-thiopheneboronic acid (**2a**) (96.0 mg, 0.75 mmol, 3.0 equiv.), and CH₃CN/DMSO (1:1, 2.0 mL). Under air, the vial was sealed with a septum and allowed to stir at 120 °C for 16 hours. After the reaction, the mixture was diluted with DCM (2.0 mL) and transferred into a 25 mL round flask, and concentrated under reduced pressure. The residue was purified by flash column chromatography (Petroleum ether / EtOAc: 1 / 2) gave the title compound **6** (5.3 mg, 10%) as a white solid, and the product **3ba** was not observed.

N -(Dimethyl(oxo)- λ^{6} -sulfaneylidene)-4-methylbenzamide (6)

TLC: $R_f = 0.28$ (Petroleum ether / EtOAc: 1 / 2, KMnO₄ stain).

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.01 (d, J = 7.8 Hz, 2H), 7.20 (d, J = 7.8 Hz, 2H), 3.38 (s, 6H),

2.39 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 174.3, 142.8, 132.8, 129.4, 128.9, 41.9, 21.7 ppm.

All recorded spectroscopic data matched those previously reported in the literature.44

3.2. Control experiment

Following **General Procedure A**, using 3-(*p*-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), 3-methoxyphenylboronic acid (**2e**) (114.0 mg, 0.75 mmol, 3.0 equiv.), and CH₃CN (2.0 mL) at 140 °C. Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3be** (41.3 mg, 68%) as a sole product.

3.3. Radical trap experiments

Following **General Procedure A**, using 3-(*p*-tolyl)-1,4,2-dioxazol-5-one (**1b**) (44.3 mg, 0.25 mmol, 1.0 equiv.), 2-thiopheneboronic acid (**2a**) (96.0 mg, 0.75 mmol, 3.0 equiv.), butylated Hydroxytoluene (BHT) (55.1 mg, 1.0 equiv.), and DCE/CH₃CN (1:1, 2.0 mL) at 120 °C for 16 hours. Purification by flash column chromatography (Petroleum ether / EtOAc: 5 / 1) gave the title compound **3ba** (41.3 mg, 76%) as a sole product.

Prepared following **General Procedure B**, using thiophene-2-boronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), benzylisocyanate (**4a**) (99.9 mg, 0.75 mmol, 3.0 equiv.), butylated Hydroxytoluene (BHT) (55.1 mg, 1.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM: 100%) gave the title compound **5aa** (51.1 mg, 94%) as a white solid.

Prepared following **General Procedure B**, using thiophene-2-boronic acid (**2a**) (32.0 mg, 0.25 mmol, 1.0 equiv.), benzylisocyanate (**4a**) (99.9 mg, 0.75 mmol, 3.0 equiv.), 2,2,6,6-tetramethylpiperidinooxy (TEMPO) (39.1 mg, 1.0 equiv.), and DCE (1.0 mL). Purification by flash column chromatography (DCM: 100%) gave the title compound **5aa** (34.2 mg, 63%) as a white solid.

4. SPECTROSCOPIC DATA

¹H NMR (400 MHz, *d*₆-DMSO) of **3ba** (<u>see procedure</u>)

 13 C NMR (101 MHz, d_6 -DMSO) of **3ba**

¹H NMR (400 MHz, *d*₆-DMSO) of **3ca** (*see procedure*)

13 C NMR (101 MHz, d_6 -DMSO) of **3ca**

¹H NMR (400 MHz, *d*₆-DMSO) of **3da** (*see procedure*)

$^{13}\mathrm{C}$ NMR (101 MHz, $d_6\text{-}\mathrm{DMSO})$ of 3da

¹H NMR (400 MHz, *d*₆-DMSO) of **3ea** (*see procedure*)

^{13}C NMR (101 MHz, $d_6\text{-}\text{DMSO})$ of **3ea**

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 2 ppm

¹H NMR (400 MHz, *d*₆-DMSO) of **3fa** (*<u>see procedure</u>*)

$^{13}\mathrm{C}$ NMR (101 MHz, $d_6\text{-}\mathrm{DMSO})$ of 3fa

¹⁹F NMR (376 MHz, *d*₆-DMSO) of **3fa**

¹H NMR (400 MHz, CDCl₃) of **3ga** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of 3ga

¹H NMR (400 MHz, *d*₆-DMSO) of **3ha** (*see procedure*)

¹³C NMR (101 MHz, *d*₆-DMSO) of **3ha**

¹H NMR (400 MHz, CDCl₃) of **3ia** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of **3ia**

¹H NMR (400 MHz, CDCl₃) of **3ja** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **3ja**

¹H NMR (400 MHz, CDCl₃) of **3ka** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **3ka**

¹⁹F NMR (376 MHz, CDCl₃) of 3ka

¹H NMR (400 MHz, CDCl₃) of **3la** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **3la**

- 40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -18 ppm

¹H NMR (400 MHz, *d*₆-DMSO) of **3ma** (*see procedure*)

¹³C NMR (101 MHz, *d*₆-DMSO) of **3ma**

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 ppm

¹H NMR (400 MHz, CDCl₃) of **3na** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of **3na**

¹H NMR (400 MHz, CDCl₃) of **3oa** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of **30a**

S73

¹³C NMR (101 MHz, CDCl₃) of **3bb**

¹³C NMR (101 MHz, CDCl₃) of **3bc**

¹H NMR (400 MHz, CDCl₃) of **3bd** (<u>see procedure</u>)

¹³C NMR (101 MHz, CDCl₃) of **3bd**

¹³C NMR (101 MHz, CDCl₃) of **3be**

¹H NMR (400 MHz, CDCl₃) of **3bf** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **3bf**

¹H NMR (400 MHz, CDCl₃) of **3bg** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **3bg**

¹H NMR (400 MHz, *d*₆-DMSO) of **3bh** (*see procedure*)

¹³C NMR (101 MHz, *d*₆-DMSO) of **3bh**

 19 F NMR (376 MHz, d_6 -DMSO) of **3bh**

¹H NMR (400 MHz, *d*₆-DMSO) of **3bi** (*see procedure*)

 $^{13}\mathrm{C}$ NMR (101 MHz, $d_6\text{-}\mathrm{DMSO})$ of $3\mathrm{bi}$

¹³C NMR (101 MHz, CDCl₃) of **3bj**

¹H NMR (400 MHz, CDCl₃) of **3bk** (*see procedure*)

¹H NMR (400 MHz, CDCl₃) of **3bl** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **3bl**

¹H NMR (400 MHz, CDCl₃) of **3bm** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **3bm**

¹H NMR (400 MHz, *d*₆-DMSO) of **3bn** (*see procedure*)

¹H NMR (400 MHz, *d*₆-DMSO) of **3bo** (<u>see procedure</u>)

¹H NMR (400 MHz, CDCl₃) of **3bp** (<u>see procedure</u>)

¹H NMR (400 MHz, *d*₆-DMSO) of **3bq** (*see procedure*)

¹³C NMR (101 MHz, d_6 -DMSO) of **3bq**

¹H NMR (400 MHz, CDCl₃) of **5aa** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of 5aa

¹H NMR (400 MHz, CDCl₃) of **5ab** (<u>see procedure</u>)

¹³C NMR (101 MHz, CDCl₃) of **5ab**

¹H NMR (400 MHz, CDCl₃) of **5ac** (*see procedure*)

¹H NMR (400 MHz, CDCl₃) of **5ad** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of **5ad**

ppm ¹H NMR (400 MHz, CDCl₃) of **5ae** (*see procedure*)

 $\mathbb{C} \operatorname{NMR}(101 \operatorname{MHZ}, \operatorname{CDCl}_3) \operatorname{OI} \operatorname{Sal}$

¹H NMR (400 MHz, CDCl₃) of **5ag** (see procedure)

^{13}C NMR (101 MHz, CDCl₃) of $\mathbf{5ag}$

180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 3 ppm ¹H NMR (400 MHz, CDCl₃) of **5ah** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **5ah**

¹³C NMR (101 MHz, CDCl₃) of **5ai**

¹H NMR (400 MHz, CDCl₃) of **5aj** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **5aj**

¹H NMR (400 MHz, *d*₆-DMSO) of **5al** (*<u>see procedure</u>*)

¹³C NMR (101 MHz, CDCl₃) of **5al**

¹H NMR (400 MHz, CDCl₃) of **5am** (*see procedure*)

180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 3 ppm

¹H NMR (400 MHz, CDCl₃) of **5an** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **5an**

¹H NMR (400 MHz, CDCl₃) of **5ao** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of 5ao

¹H NMR (400 MHz, CDCl₃) of **5ap** (*see procedure*)

- 43.97

77.48 CDCl3 77.16 CDCl3 76.84 CDCl3

¹H NMR (400 MHz, CDCl₃) of **5ba** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of **5ba**

¹H NMR (400 MHz, CDCl₃) of **5ca** (<u>see procedure</u>)

$^{13}\mathrm{C}$ NMR (101 MHz, $d_6\text{-}\mathrm{DMSO})$ of $\mathbf{5da}$

170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 ppm

 ^{13}C NMR (101 MHz, $d_6\text{-}\text{DMSO})$ of **5ea**

¹⁹F NMR (376 MHz, *d*₆-DMSO) of **5ea**

¹³C NMR (101 MHz, CDCl₃) of 5fa

1.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 ppm 2.5 2.0 1.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0

¹³C NMR (101 MHz, *d*₆-DMSO) of **5ga**

¹H NMR (400 MHz, CDCl₃) of **5ha** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **5ha**

¹H NMR (400 MHz, CDCl₃) of **5ia** (*see procedure*)

---0.00

¹³C NMR (101 MHz, CDCl₃) of **5ia**

¹H NMR (400 MHz, *d*₆-DMSO) of **5ja** (*<u>see procedure</u>*)

13 C NMR (101 MHz, d_6 -DMSO) of **5ja**

170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 ppm ¹⁹F NMR (376 MHz, *d*₆-DMSO) of **5ja**

¹H NMR (400 MHz, *d*₆-DMSO) of **5ka** (*see procedure*)

¹³C NMR (101 MHz, *d*₆-DMSO) of **5ka**

1.03<u>₹</u> 5.134 3.00-0.95≖ 1.00= 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 5.5 ppm 7.5 7.0 6.5 6.0 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

¹³C NMR (101 MHz, *d*₆-DMSO) of **5**la

¹³C NMR (101 MHz, CDCl₃) of **5ma**

¹H NMR (400 MHz, CDCl₃) of **5na** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of **5na**

¹³C NMR (101 MHz, CDCl₃) of **50a**

¹H NMR (400 MHz, CDCl₃) of **5pa** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **5pa**

¹³C NMR (101 MHz, CDCl₃) of **5qa**

¹³C NMR (101 MHz, *d*₆-DMSO) of **5ra**

¹H NMR (400 MHz, CDCl₃) of 5sa (see procedure)

¹³C NMR (101 MHz, CDCl₃) of 5sa

¹H NMR (400 MHz, CDCl₃) of **5ta** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of 5ta

¹H NMR (400 MHz, CDCl₃) of **5ua** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of **5ua**

¹H NMR (400 MHz, CDCl₃) of **5va** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of **5va**

¹H NMR (400 MHz, CDCl₃) of **5wa** (*see procedure*)

3.43 3.44 3.44 1.15 3.3.38 3.3.38 3.3.38 3.3.38 3.3.38 3.3.38 3.3.38 3.3.38 1.1.55 1.1

¹³C NMR (101 MHz, CDCl₃) of 5wa

¹H NMR (400 MHz, CDCl₃) of **5xa** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of **5xa**

¹H NMR (400 MHz, CDCl₃) of **5ya** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of **5ya**

S131

¹³C NMR (101 MHz, CDCl₃) of **5za**

¹H NMR (400 MHz, CDCl₃) of 6 (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **6**

5. REFERENCES

- Massouh, J.; Petrelli, A.; Bellière-Baca, V.; Hérault, D.; Clavier, H., Rhodium(III)-Catalyzed Aldehyde C–H Activation and Functionalization with Dioxazolones: An Entry to Imide Synthesis. *Adv. Synth. Catal.* 2021, *364* (4), 831-837.
- Bollenbach, M.; Aquino, P. G. V.; de Araújo-Júnior, J. X.; Bourguignon, J.-J.; Bihel, F.; Salomé, C.; Wagner, P.; Schmitt, M., Efficient and Mild Ullmann-Type *N*-Arylation of Amides, Carbamates, and Azoles in Water. *Chem. Eur. J.* **2017**, *23* (55), 13676-13683.
- Parmentier, M.; Palamini, P.; Gosselin, B.; Jakobi, M.; Bordas, V.; Bin, W.; Gallou, F., One-pot synthesis of substituted amides from nitriles under mild reaction conditions in aqueous surfactant TPGS-750-M. *Catal. Today* 2024, 442, 114915.
- Zhang, Z.; Yu, Y.; Liebeskind, L. S., N-Amidation by Copper-Mediated Cross-Coupling of Organostannanes or Boronic Acids with O-Acetyl Hydroxamic Acids. Org. Lett. 2008, 10 (14), 3005-3008.
- Zhu, L.; Le, L.; Yan, M.; Au, C.-T.; Qiu, R.; Kambe, N., Carbon–Carbon Bond Formation of Trifluoroacetyl Amides with Grignard Reagents via C(O)–CF₃ Bond Cleavage. *J. Org. Chem.* 2019, 84 (9), 5635-5644.
- Deng, X.; Jiang, F.; Wang, X., Asymmetric Deoxygenative Functionalization of Secondary Amides with Vinylpyridines Enabled by a Triple Iridium-Photoredox-Chiral Phosphoric Acid System. *Org. Lett.* 2024, 26 (12), 2483-2488.
- 7. Kim, S.; Ko, H.; Kim, S.; Lee, T., Solution-Phase Synthesis of a Library of Biaryl Amides Using Girard's Reagent as an Acid Chloride Scavenger. *J. Comb. Chem.* **2002**, *4* (6), 549-551.
- 8. Liang, W.; Xie, F.; Yang, Z.; Zeng, Z.; Xia, C.; Li, Y.; Zhu, Z.; Chen, X., Mono/Dual Amination of Phenols with Amines in Water. *Org. Lett.* **2020**, *22* (21), 8291-8295.
- 9. Sergeev, A. G.; Artamkina, G. A.; Khrustalev, V. N.; Antipin, M. Y.; Beletskaya, I. P., Arylamidate palladium complexes containing deprotonated phthalimide and *p*-methylbenzamide: possibility of their participation in reductive elimination. *Mendeleev Commun.* **2007**, *17* (3), 142-144.
- Wang, N.; Wang, D.; He, Y.; Xi, J.; Wang, T.; Liang, Y.; Zhang, Z., Photoinduced Annulation of *N*-Phenylbenzamides for the Synthesis of Phenanthridin-6(5*H*)-Ones. *Adv. Synth. Catal.* 2022, 364 (6), 1150-1155.
- 11. Derasp, J. S.; Beauchemin, A. M., Rhodium-Catalyzed Synthesis of Amides from Functionalized Blocked Isocyanates. *ACS Catal.* **2019**, *9* (9), 8104-8109.
- Skhiri, A.; Taborosi, A.; Ohara, N.; Ano, Y.; Mori, S.; Chatani, N., Experimental and theoretical studies of the rhodium(I)-catalysed C–H oxidative alkenylation/cyclization of *N*-(2-(methylthio)phenyl)benzamides with maleimides. *Org. Chem. Front.* **2023**, *10* (7), 1617-1625.
- 13. Silva, L.; Rosário, A. R.; Machado, B. M.; Lüdtke, D. S., Traceless selenocarboxylates for the one-pot synthesis of amides and derivatives. *Tetrahedron* **2021**, *79*, 131834.
- Park, J.; Jang, D.; An, J.; Park, Y.; Bae, H.; Kim, M.; Lee, J.; Son, J., Copper(I)-Mediated Decarboxylative *N*-Arylation of Dioxazolones: Synthesis of *N*-Aryl Amides. *Synlett* 2023, *34* (09), 983-989.
- Pan, B.; Huang, D.-M.; Sun, H.-T.; Song, S.-N.; Su, X.-B., Heterocyclic Boron Acid Catalyzed Dehydrative Amidation of Aliphatic/Aromatic Carboxylic Acids with Amines. *J. Org. Chem.* 2023, 88 (5), 2832-2840.

- Wang, H.; Shao, H.; Das, A.; Dutta, S.; Chan, H. T.; Daniliuc, C.; Houk, K. N.; Glorius, F., Dearomative ring expansion of thiophenes by bicyclobutane insertion. *Science* 2023, *381* (6653), 75-81.
- Li, G.; Li, M.; Xia, Z.; Tan, Z.; Deng, W.; Fang, C., Direct Synthesis of Amides from Benzonitriles and Benzylic Alcohols via a KO'Bu-Mediated MPV-type Hydrogen Transfer Process. *J. Org. Chem.* 2022, 87 (14), 8884-8891.
- Lainer, T.; Czerny, F.; Haas, M., Solvent-free amide bond formation using a variety of methoxysilanes as coupling agent. Org. Biomol. Chem. 2022, 20 (18), 3717-3720.
- Saito, S.; Movahed, F. S.; Sawant, D. N.; Bagal, D. B., Tris(o-phenylenedioxy)cyclotriphosphazene as a Promoter for the Formation of Amide Bonds Between Aromatic Acids and Amines. *Synthesis* 2020, *52* (21), 3253-3262.
- Sun, D.; Wang, B.; Jiang, Y.; Kong, Z.; Mu, M.; Yang, C.; Tan, J.; Hu, Y., Benzodioxane Carboxamide Derivatives as Novel Monoamine Oxidase B Inhibitors with Antineuroinflammatory Activity. ACS Med. Chem. Lett. 2024, 15 (6), 798-805.
- Xu, J.; Huang, W.; Li, M.; Kang, C.; Jiang, G.; Ji, F., Selective Synthesis of Amides and α-Ketoamides via Electrochemical Decarboxylation and Dehydration. *J. Org. Chem.* 2024, 89 (15), 10498-10510.
- 22. Kong, W.; Casimiro, M.; Fuentes, N.; Merino, E.; Nevado, C., Metal-Free Aryltrifluoromethylation of Activated Alkenes. *Angew. Chem. Int. Ed.* **2013**, *52* (49), 13086-13090.
- 23. Wang, Y.; Tian, B.; Li, Y.; Li, W.; Chen, Z.; Liu, S.; Li, S., A Sustainable and Versatile Cellulosebased CO Surrogate for Carbonylative Reactions. *Chemsuschem* **2024**, *17* (9), e202301324.
- Wu, Y.-W.; Chen, M.-X.; Li, Y.; Hu, L.-M.; Zhao, L.; Jia, Z.; Zhao, X.; Hu, X.-H., A catalyst-free cross-coupling of isocyanates and triarylboranes for secondary amide synthesis. *Org. Chem. Front.* 2024, *11* (2), 364-369.
- 25. Zhu, L.; Deng, L.; Xie, Y.; Liu, L.; Ma, X.; Liu, R., Mechanochemistry, solvent-free and scale-up: Application toward coupling of acids and amines to amides. *Results in Chemistry* **2023**, *5*, 100882.
- 26. Wang, X.; Gao, S.; Yang, J.; Gao, Y.; Wang, L.; Tang, X., Synthesis and antifungal activity evaluation of new heterocycle containing amide derivatives. *Nat. Prod. Res.* **2016**, *30* (6), 682-688.
- 27. Wang, S.-P.; Cheung, C. W.; Ma, J.-A., Direct Amidation of Carboxylic Acids with Nitroarenes. J. Org. Chem. 2019, 84 (21), 13922-13934.
- 28. Correa, A.; Elmore, S.; Bolm, C., Iron-Catalyzed *N*-Arylations of Amides. *Chem. Eur. J.* **2008**, *14* (12), 3527-3529.
- 29. Hollósy, F.; Seprödi, J.; Örfi, L.; Erös, D.; Kéri, G.; Idei, M., Evaluation of lipophilicity and antitumour activity of parallel carboxamide libraries. *J. Chromatogr. B* **2002**, *780* (2), 355-363.
- Colombo, M.; Bossolo, S.; Aramini, A., Phosphorus Trichloride-Mediated and Microwave-Assisted Synthesis of a Small Collection of Amides Bearing Strong Electron-Withdrawing Group Substituted Anilines. J. Comb. Chem. 2009, 11 (3), 335-337.
- 31. Stradiotto, M.; Lundrigan, T.; Tassone, J. P., Nickel-Catalyzed *N*-Arylation of Amides with (Hetero)aryl Electrophiles by Using a DBU/NaTFA Dual-Base System. *Synlett* **2020**, *32* (16), 1665-1669.
- Steinsoultz, P.; Bailly, A.; Wagner, P.; Oliva, E.; Schmitt, M.; Grimaud, L.; Bihel, F., In Situ Formation of Cationic π-Allylpalladium Precatalysts in Alcoholic Solvents: Application to C–N Bond Formation. ACS Catal. 2022, 12 (1), 560-567.
- 33. Surabhi; Sah, D.; Shabir, J.; Gupta, P.; Mozumdar, S., Imidazole-Functionalized Porous Graphene

Oxide Nanosheets Loaded with Palladium Nanoparticles for the Oxidative Amidation of Aldehydes. *ACS Appl. Nano Mater.* **2022**, *5* (4), 5776-5792.

- Wang, K.; Hou, J.; Zhang, C.; Cheng, K.; Bai, R.; Xie, Y., Palladium-Catalyzed Picolinamide-Directed Benzylic C(sp³)–H Chalcogenation with Diaryl Disulfides and Diphenyl Diselenide. *Adv. Synth. Catal.* **2020**, *362* (14), 2947-2952.
- 35. Zhang, S.; Huang, F.; Wu, S.; Hu, W., Potassium Carbonate Promoted C–N Coupling Reaction between Benzamides and Aryl Iodides. *Synthesis* **2017**, *50* (05), 1090-1096.
- Zhao, L.; Sun, M.; Yang, F.; Wu, Y., Silver(I) Promoted the C4–H Bond Phosphonation of 1-Naphthylamine Derivatives with H-Phosphonates. J. Org. Chem. 2021, 86 (17), 11519-11530.
- 37. Gaware, S.; Chatterjee, R.; Kapdi, A. R.; Dandela, R., Zinc-catalyzed transamidation and esterification of *N*-benzoyl cytosine via C–N bond cleavage. *Org. Biomol. Chem.* **2023**, *21* (25), 5176-5180.
- Jiang, Y.; Zhu, W.; Huang, J.; Luo, F.; Chen, X.; Fang, C.; Chen, X.; Liu, S.; Hu, Y.; Zhang, S., A simple method for *N*-arylation of secondary amides/amines through a NaH-initiated aryne generation strategy. *Org. Chem. Front.* 2024, *11* (1), 12-20.
- Chirila, P. G.; Skibinski, L.; Miller, K.; Hamilton, A.; Whiteoak, C. J., Towards a Sequential One-Pot Preparation of 1,2,3-Benzotriazin-4(3H)-ones Employing a Key Cp*Co(III)-catalyzed C–H Amidation Step. *Adv. Synth. Catal.* 2018, *360* (12), 2324-2332.
- Gui, Q.-W.; Ying, S.; Liu, X.; Wang, J.; Xiao, X.; Liu, Z.; Wang, X.; Shang, Y.; Li, Q., BF₃·OEt₂mediated transamidation of unprotected primary amides under solvent-free conditions. *Org. Biomol. Chem.* 2024, 22 (32), 6605-6611.
- Laha, J. K.; Gulati, U.; Gupta, A., Decarboxylative Amidation of Aryl/Heteroarylacetic Acids via Activated Esters through Traceless α-Functionalized Benzylic Radicals. *Org. Lett.* **2023**, *25* (19), 3402-3406.
- 42. Nageswara Rao, S.; Chandra Mohan, D.; Adimurthy, S., Chitosan: an efficient recyclable catalyst for transamidation of carboxamides with amines under neat conditions. *Green Chem.* **2014**, *16* (9), 4122-4126.
- Zhao, Y.; Shakeri, A.; Hefny, A. A.; Rao, P. P. N., N-Benzyl, N-phenethyl and Nbenzyloxybenzamide derivatives inhibit amyloid-beta (Aβ42) aggregation and mitigate Aβ42induced neurotoxicity. *Med. Chem. Res.* 2024, 33 (7), 1229-1241.
- 44. Qi, T.; Fang, N.; Huang, W.; Chen, J.; Luo, Y.; Xia, Y., Iron(II)-Catalyzed Nitrene Transfer Reaction of Sulfoxides with *N*-Acyloxyamides. *Org. Lett.* **2022**, *24* (31), 5674-5678.