Supporting Information

Asymmetric Synthesis of Axially Chiral *N*,*N*'-CarbazolePyrrole via Copper-Catalyzed Friedel–Crafts Reaction

Xin-Ru Wang and Yingying Zhang*

Anhui province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediatiat, School of Life Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China. E-mail: zhangyingy@chnu.edu.cn

Contents

1.	General Information	S3
2.	Optimization of Reaction Conditions	.S4
3.	General Procedure for the Synthesis of carbazole pyrrole ring 1	.S6
4.	Characterization data of carbazole pyrrole rings	
5.	General Procedure for axially chiral N,N'-carbazolepyrroles	S19
6.	Characterization Data of Products	S20
7.	Crystal Structure of (S)-3a	S56
8.	¹ H and ¹³ C NMR Spectra for New Compounds	S78

1. General Information

All air- and moisture-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or in a glove box under nitrogen. ¹H NMR, ¹³C NMR spectra were measured at 600 MHz and 151 MHz in CDCl₃ using TMS signal (δ 0.00 ppm) and the residual signals from CHCl₃: (δ = 7.26 ppm for 1H, δ = 77.00 ppm for ¹³C) as internal references for ¹H and ¹³C NMR respectively. Data for ¹H NMR spectra are reported as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, qd = quartet of doublets, ddd = doublet of doublet of doublets, m = multiplet), coupling constant (Hz), and integration. High resolution mass spectra were acquired by Agilent 6545 Accurate-Mass Q-TOF LC/MS System. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash column chromatography was performed over silica gel (300-400 mesh). X-ray Crystallography was collected at 173 K a on a CCD area detector (Supernova Dual Source, Cu at Zero equipped with an AtlasS2 diffractometer or XtaLAB AFC12 (RINC): Kappa single diffractometer) using Cu K α radiation. The substrates **1** were synthesized according to published procedures. The spectral data of the substrates were consisted with that reported in the literature. All other chemicals and solvents were purchased from commercial company and used as received.

2. Optimization of Reaction Conditions

Table S1. The effect of the chiral ligands on the reaction^a

[a] General conditions: **1a** (0.10 mmol), **2a** (0.15 mmol), Cu(OTf)₂ (10 mol%), and ligand (12 mol%) in Et₂O (1.0 mL) at rt under Ar atmosphere for 24 h; Isolated yields; Enantiomeric excess of **3a** was determined by HPLC analysis using a chiral stationary phase.

Table S2. The effect of the slovents on the reaction^a

[a] General conditions: **1a** (0.10 mmol), **2a** (0.15 mmol), $Cu(OTf)_2$ (10 mol%), and **L4** (12 mol%) in solvent (1.0 mL) at rt under Ar atmosphere for 24 h; Isolated yields; Enantiomeric excess of **3a** was determined by HPLC analysis using a chiral stationary phase.

Table S3. The effect of the additives on the reaction^a

[a] General conditions: **1a** (0.10 mmol), **2a** (0.15 mmol), Cu(OTf)₂ (10 mol%), **L4** (12 mol%) and additive in Et₂O (1.0 mL) at rt under Ar atmosphere for 24 h; Isolated yields; Enantiomeric excess of **3a** was determined by HPLC analysis using a chiral stationary phase.

3. General Procedure for the Synthesis of carbazole pyrrole ring 1

To a solution of carbazole (10 mmol) in 30 mL NMP was added 12 mL t-BuOK (1M in NMP) and the reaction mixture was stirred at r.t. for 0.5 h. Then, a solution of p-Nitrophenoxyamine (12 mmol) was added to the mixture, which was stirred at r.t. for 2 h. After the completion of the reaction which was indicated by TLC, the reaction mixture was quenched with H₂O and the aqueous layer was extracted with EtOAc (3×10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure. The residue was purified through flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to afford pure product **S1**.

To a solution of 1, 4-diketone (6 mmol, 1.2 equiv.) in toluene was added the 1-amino-heterocycle compound (5 mmol, 1.0 equiv.) and PPTS (0.5 mmol, 10 mol%). The resulting mixture was heated at 80 °C for 8-24 h. The solvent was evaporated under reduced pressure and the residue purified by silica gel column chromatography to give the compound **1**.

4. Characterization data of carbazole pyrrole rings

1-bromo-9-(2,5-dimethyl-1H-pyrrol-1-yl)-9H-carbazole: 1a

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1a** (1.1 g, 65% yield). White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.10-8.07 (m, 2H), 7.61-7.60 (m, 1H), 7.47-7.44 (m, 1H), 7.36-7.33 (m, 1H), 7.19-7.17 (m, 1H), 6.98 (d, J = 7.8 Hz, 1H), 5.95 (s, 2H), 1.86 (s, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 141.4, 135.9, 131.2, 129.9, 127.5, 124.4, 121.9, 121.7, 120.4, 120.3, 119.5, 109.0, 104.3, 11.0. HRMS (ESI) calcd for C₁₈H₁₆N₂Br [(M+H⁺)]: 339.0491, found: 339.0491.

1-bromo-3,6-di-tert-butyl-9-(2,5-dimethyl-1H-pyrrol-1-yl)-9H-carbazole: 1b

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1b** (800 mg, 40% yield). White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.08-8.07 (m, 2H), 7.62 (s, 1H), 7.49-7.48(m, 1H), 6.91-6.90 (m, 1H), 5.94 (s, 2H), 1.88 (s, 6H), 1.50 (s, 18H). ¹³C NMR (151 MHz, CDCl₃): δ 145.3, 144.6, 139.9, 134.4, 129.9, 128.7, 125.2, 124.3, 120.3, 116.3, 115.8, 108.5, 104.0, 101.8, 34.82, 34.76, 31.9, 31.8, 11.0. HRMS (ESI) calcd for C₂₆H₃₂N₂Br [(M+H⁺)]: 451.1743, found: 451.1743.

1-bromo-9-(2,5-dimethyl-1H-pyrrol-1-yl)-3,6-diphenyl-9H-carbazole: 1c

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1c** (1.2 g, 49% yield). White solid. ¹H NMR (600 MHz, CDCl₃): δ 8.35-8.34 (m, 2H), 7.90 (s, 1H), 7.72-7.71 (m, 5H), 7.52-7.49 (m, 4H), 7.41-7.37 (m, 2H), 7.08 (d, *J* = 8.4 Hz, 1H), 6.00 (s, 2H), 1.96 (s, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 141.4, 141.2, 140.2, 135.9, 135.7, 135.5, 130.6, 129.9, 128.93, 128.86, 127.4, 127.32, 127.30, 127.0, 124.8, 121.0, 119.0, 118.1, 109.4, 104.5, 102.7, 11.0. HRMS (ESI) calcd for C₃₀H₂₄N₂Br [(M+H⁺)]: 491.1117, found: 491.1118.

1,3,6-tribromo-9-(2,5-dimethyl-1H-pyrrol-1-yl)-9H-carbazole: 1d

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1d** (930 mg, 38% yield). White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.18-8.15 (m, 2H), 7.77 (s, 1H), 7.57-7.56 (m, 1H), 6.88-6.86 (m, 1H), 5.95, (s, 1H), 5.94 (s, 1H), 1.842 (s, 3H), 1.837 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 140.4, 135.2, 133.9, 131.1, 129.6, 124.3, 123.4, 122.6, 121.0, 114.9, 114.1, 110.8, 104.9, 103.2, 10.9. HRMS (ESI) calcd for C₁₈H₁₄N₂Br₃ [(M+H⁺)]: 494.8702, found: 494.8694.

1-bromo-9-(2,5-dimethyl-1H-pyrrol-1-yl)-3,6-dimethyl-9H-carbazole: 1e

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1e** (120 mg, 4% yield). Pink solid.

¹H NMR (600 MHz, CDCl₃): δ 8.37-8.33 (m, 2H), 7.92 (s, 1H), 7.73 (d, J = 9.0 Hz, 1H), 6.76 (d, J = 8.4 Hz, 1H), 5.94 (s, 2H), 1.83 (s, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 140.6, 139.1, 136.6, 135.4, 129.6, 129.5, 128.6, 124.7, 121.3, 111.1, 104.8, 103.5, 10.9. HRMS (ESI) calcd for C₁₈H₁₄N₂BrI₂ [(M+H⁺)]: 590.8424, found: 590.8425.

3,6-di-tert-butyl-1-chloro-9-(2,5-dimethyl-1H-pyrrol-1-yl)-9H-carbazole: 1f

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1f** (560 mg, 28% yield). White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.09-8.02 (m, 2H), 7.51-7.49 (m, 1H), 7.44 (s, 1H), 6.93 (d, J = 9.0 Hz, 1H), 5.93 (s, 2H), 1.89 (s, 6H), 1.46 (s, 18H). ¹³C NMR (151 MHz, CDCl₃): δ 145.0, 144.5, 139.8, 133.4, 129.8, 125.5, 125.2, 124.3, 120.5, 116.3, 115.3, 115.2, 108.5, 103.9, 34.82, 34.80, 31.9, 31.8, 10.9. HRMS (ESI) calcd for C₂₆H₃₂N₂Cl [(M+H⁺)]: 407.2249, found: 407.2249.

1-chloro-9-(2,5-dimethyl-1H-pyrrol-1-yl)-3,6-diphenyl-9H-carbazole: 1g

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1g** (1.05 g, 47% yield). White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.36-8.29 (m, 2H), 7.74-7.71 (m, 6H), 7.53-7.50 (m, 4H), 7.42-7.38 (m, 2H), 7.11 (d, *J* = 8.4 Hz, 1H), 6.00 (s, 2H), 1.97 (s, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 141.4, 141.2, 140.3, 135.6, 135.5, 134.6, 129.7, 128.94, 128.86, 127.4, 127.32, 127.30, 127.28, 127.0, 124.9, 121.3, 119.1, 117.5, 116.4, 109.4, 104.4, 11.0. HRMS (ESI) calcd for C₃₀H₂₄N₂Cl [(M+H⁺)]: 447.1623, found: 447.1622.

3,6-dibromo-1-chloro-9-(2,5-dimethyl-1H-pyrrol-1-yl)-9H-carbazole: 1h

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1h** (510 mg, 23% yield). White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.18-8.10 (m, 2H), 7.58-7.57 (m, 2H), 6.90 (d, J = 8.4 Hz, 1H), 5.93 (s, 2H), 1.85 (s, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 140.3, 134.2, 131.1, 130.8, 129.5, 124.3, 123.5, 122.1, 121.1, 117.2, 114.8, 113.7, 110.7, 104.7, 10.8. HRMS (ESI) calcd for C₁₈H₁₄N₂ClBr₂ [(M+H⁺)]: 450.9207, found: 450.9206.

3,6-di-tert-butyl-9-(2,5-dimethyl-1H-pyrrol-1-yl)-1-iodo-9H-carbazole: 1i

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1i** (200 mg, 47% yield). White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.11-8.08 (m, 2H), 7.899-7.897 (m, 1H), 7.48-7.47 (m, 1H), 6.86 (d, J = 8.4 Hz, 1H), 5.96 (s, 2H), 1.87 (s, 6H), 1.456 (s, 9H), 1.455 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 145.7, 144.6, 139.9, 136.9, 135.6, 130.2, 125.1, 123.6, 120.0, 116.7, 116.1, 108.5, 104.3, 70.4, 34.8, 34.6, 31.9, 31.8, 11.3. HRMS (ESI) calcd for C₂₆H₃₁N₂NaI [(M+Na⁺)]: 521.1424, found: 521.1420.

9-(2,5-dimethyl-1H-pyrrol-1-yl)-1-phenyl-9H-carbazole: 1j

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1j** (389 mg, 23% yield). White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.17-8.15 (m, 2H), 7.42-7.36 (m, 2H), 7.34-7.31 (m, 2H), 7.20-7.14 (m, 5H), 6.83 (d, J = 8.4 Hz, 1H), 5.53 (s, 2H), 1.73 (s, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 141.3, 137.3, 136.9, 129.4, 128.6, 127.5, 127.3, 126.8, 126.6, 126.5, 122.7, 121.1, 121.0, 120.6, 120.1, 120.0, 108.9, 104.3, 11.0. HRMS (ESI) calcd for C₂₄H₂₁N₂ [(M+H⁺)]: 337.1699, found: 337.1699.

9-(2,5-dimethyl-1H-pyrrol-1-yl)-1-(p-tolyl)-9H-carbazole: 1k

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1k** (643 mg, 37% yield). White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.14-8.13 (m, 2H), 7.41-7.38 (m, 1H), 7.37-7.34 (m, 1H), 7.33-7.29 (m, 2H), 7.02 (d, *J* = 8.4 Hz, 2H), 6.97 (d, *J* = 7.8 Hz, 2H), 6.81 (d, *J* = 7.8 Hz, 1H), 5.53 (s, 2H), 2.32 (s, 3H), 1.71 (s, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 141.3, 137.0, 136.0, 134.3, 129.5, 128.4, 127.9, 127.5, 126.8, 126.6, 122.6, 121.2, 120.5, 120.1, 119.4, 108.9, 104.3, 21.1, 11.0. HRMS (ESI) calcd for C₂₅H₂₃N₂ [(M+H⁺)]: 351.1856, found: 351.1856.

9-(2,5-dimethyl-1H-pyrrol-1-yl)-1-(4-methoxyphenyl)-9H-carbazole: 11

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1**l (348 mg, 19% yield). White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.15-8.13 (m, 2H), 7.41-7.40 (m, 1H), 7.37-7.34 (m, 1H), 7.33-7.28 (m, 2H), 7.06-7.04 (m, 2H), 6.82 (d, *J* = 8.4 Hz, 1H), 6.72-6.70 (m, 2H), 5.56 (s, 2H), 3.80 (s, 3H), 1.72 (s, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 158.4, 141.3, 137.0, 129.7, 129.61, 129.56, 127.5, 126.8, 126.3, 122.6, 121.1, 121.0, 120.6, 119.3, 112.9, 108.9, 104.4, 55.3, 11.0. HRMS (ESI) calcd for C₂₅H₂₃N₂O [(M+H⁺)]: 367.1805, found: 367.1804.

1-(4-(tert-butyl)phenyl)-9-(2,5-dimethyl-1H-pyrrol-1-yl)-9H-carbazole: 1m

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1m** (862 mg, 50% yield). White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.16-8.14 (m, 2H), 7.42-7.31 (m, 4H), 7.18 (d, J = 12.0 Hz, 2H), 7.07 (d, J = 6.0 Hz, 2H), 6.85 (d, J = 8.4 Hz, 1H), 5.48 (s, 2H), 1.71 (s, 6H), 1.33 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 149.2, 141.3, 137.1, 134.0, 129.1, 128.1, 127.4, 126.73, 126.70, 124.1, 122.6, 121.1, 121.0, 120.5, 120.1, 119.4, 108.9, 104.3, 34.4, 31.3, 11.0. HRMS (ESI) calcd for C₂₈H₂₉N₂ [(M+H⁺)]: 393.2325, found: 393.2325.

9-(2,5-dimethyl-1H-pyrrol-1-yl)-1-(m-tolyl)-9H-carbazole: 1n

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1n** (689 mg, 40% yield). White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.17-8.15 (m, 2H), 7.43-7.40 (m, 1H), 7.39-7.37 (m, 1H), 7.35-7.32 (m, 2H), 7.13-7.11 (m, 1H), 7.02 (d, *J* = 6.0 Hz, 2H), 6.93 (s, 1H), 6.85 (d, *J* = 7.8 Hz, 1H), 5.56 (s, 2H), 2.28 (s, 3H), 1.75 (s, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 141.3, 137.0, 136.9, 136.7, 129.5, 129.3, 127.5, 127.4, 127.2, 126.8, 126.7, 125.8, 122.6, 121.1, 121.0, 120.6, 120.1, 119.5, 108.9, 104.2, 21.0, 11.0. HRMS (ESI) calcd for C₂₅H₂₃N₂ [(M+H⁺)]: 351.1856, found: 351.1856.

9-(2,5-dimethyl-1H-pyrrol-1-yl)-1-(3,5-dimethylphenyl)-9H-carbazole: 10

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1o** (693 mg, 38% yield). White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.16-8.14 (m, 2H), 7.42-7.40 (m, 1H), 7.38-7.35 (m, 1H), 7.34-7.32 (m, 2H), 6.85-6.84 (m, 2H), 6.77 (s, 2H), 5.56 (s, 2H), 2.25 (s, 6H), 1.74 (s, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 141.3, 137.0, 136.8, 136.6, 129.2, 128.3, 127.5, 126.9, 126.7, 126.6, 122.6, 121.1, 120.5, 120.1, 119.3, 108.9, 104.1, 108.9, 104.2, 21.0, 10.9. HRMS (ESI) calcd for C₂₆H₂₅N₂ [(M+H⁺)]: 365.2012, found: 365.2012.

9-(2,5-dimethyl-1H-pyrrol-1-yl)-1-ethyl-9H-carbazole: 1p

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1p** (489 mg, 34% yield). White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.13-8.11 (m, 1H), 8.02-8.01 (m, 1H), 7.44-7.42 (m, 1H), 7.35-7.30 (m, 3H), 6.96 (d, *J* = 7.8 Hz, 1H), 5.99 (s, 2H), 2.36-2.33 (q, *J* = 7.8 Hz, 2H), 1.90 (s, 6H), 1.21 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl3): δ 141.2, 137.4, 129.3, 127.1, 126.63, 126.58, 122.3, 121.3, 121.0, 120.9, 120.1, 118.0, 108.6, 104.6, 20.9, 14.5, 10.9. HRMS (ESI) calcd for C₂₀H₂₁N₂ [(M+H⁺)]: 289.1699, found: 289.1700.

9-(2,5-dimethyl-1H-pyrrol-1-yl)-1-vinyl-9H-carbazole: 1q

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1q** (793 mg, 55% yield).White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.13-8.07 (m, 2H), 7.63-7.62 (m, 1H), 7.46-7.44 (m, 1H), 7.35-7.31 (m, 2H), 7.03 (d, *J* = 7.2 Hz, 1H), 6.00 (s, 2H), 5.96 (d, *J* = 11.4 Hz, 1H), 5.69 (d, *J* = 17.4 Hz, 1H), 5.13 (d, *J* = 10.8 Hz, 1H), 1.87 (s, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 140.9, 136.7, 130.6, 129.1, 126.8, 124.1, 122.6, 122.5, 121.0, 120.2, 119.9, 116.2, 108.6, 104.8, 10.8. HRMS (ESI) calcd for C₂₀H₁₉N₂ [(M+H⁺)]: 287.1543, found: 287.1544.

9-(2,5-dimethyl-1H-pyrrol-1-yl)-1-ethynyl-9H-carbazole: 1r

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1r** (762 mg, 53% yield). White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.03-8.01 (m, 2H), 7.50-7.49 (m, 1H), 7.37-7.35 (m, 1H), 7.26-7.23 (m, 1H), 7.20-7.17 (m, 1H), 6.92 (d, J = 7.8 Hz, 1H), 5.81 (s, 2H), 2.84 (s, 1H), 1.78 (s, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 140.80, 140.77, 131.7, 130.1, 127.2, 122.2, 121.3, 121.2, 120.9, 120.5, 120.4, 108.8, 104.5, 103.8, 80.6, 10.8. HRMS (ESI) calcd for C₂₀H₁₇N₂ [(M+H⁺)]: 285.1386, found: 285.1386.

1-(cyclopropylethynyl)-9-(2,5-dimethyl-1H-pyrrol-1-yl)-9H-carbazole: 1s

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1s** (837 mg, 52% yield). White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.07-8.01 (m, 2H), 7.47-7.21 (m, 4H), 6.90 (s, 1H), 5.90 (s, 2H), 1.85 (s, 6H), 1.25 (s, 1H), 0.67 (d, *J* = 60.0 Hz, 4H). ¹³C NMR (151 MHz, CDCl₃): δ 140.9, 139.3, 131.3, 129.6, 127.0, 122.1, 121.11, 120.96, 120.6, 120.2, 120.0, 108.7, 106.7, 104.0, 69.6, 10.9, 8.8. HRMS (ESI) calcd for C₂₃H₂₁N₂ [(M+H⁺)]: 325.1699, found: 325.1699.

9-(2,5-dimethyl-1H-pyrrol-1-yl)-9H-carbazole: 1t

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1t** (698 mg, 53% yield). White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.13 (d, J = 7.8 Hz, 2H), 7.44-7.41 (m, 2H), 7.32-7.30 (m, 2H), 7.04 (d, J = 7.8 Hz, 2H), 5.98 (s, 2H), 1.84 (s, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 140.4, 128.8, 126.7, 121.3, 120.8, 120.5, 108.5, 104.7, 10.8. HRMS (ESI) calcd for C₁₈H₁₇N₂ [(M+H⁺)]: 261.1386, found: 261.1386.

1-(2,5-dimethyl-1H-pyrrol-1-yl)-2-phenyl-1H-indole: 1u

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1u** (437 mg, 30% yield). Yellow solid.

¹H NMR (600 MHz, CDCl₃): δ 7.68-7.67 (m, 1H), 7.33-7.28 (m, 3H), 7.23-7.19 (m, 4H), 6.96-6.94 (m, 1H), 6.90 (s, 1H), 5.91 (s, 2H), 1.85 (s, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 139.4, 138.3, 130.5, 128.8, 128.5, 128.0, 126.6, 125.7, 123.4, 121.5, 120.7, 109.1, 104.8, 100.9, 10.9. HRMS (ESI) calcd for C₂₀H₁₉N₂ [(M+H⁺)]: 287.1543, found: 287.1542.

1-(2,5-dimethyl-1H-pyrrol-1-yl)-2-(p-tolyl)-1H-indole: 1v

On a 5 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 40/1) to afford the product **1v** (369 mg, 23% yield). Yellow solid.

¹H NMR (600 MHz, CDCl₃): δ 7.68-7.67 (m, 1H), 7.23-7.22 (m, 2H), 7.14 (d, J = 8.4 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 6.96-6.95 (m, 1H), 6.87 (s, 1H), 5.93 (s, 2H), 2.35 (s, 3H), 1.86 (s, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 139.6, 138.2, 137.9, 129.5, 128.5, 127.7, 126.5, 125.8, 123.1, 121.4, 120.6, 109.0, 104.7, 100.4, 21.2, 10.9. HRMS (ESI) calcd for C₂₁H₂₀N₂Na [(M+Na⁺)]: 323.1519, found: 323.1519.

5. General Procedure for Copper-catalyzed Friedel–Crafts reaction for the asymmetric synthesis of axially chiral *N*,*N*'-carbazolepyrroles

To a mixture of Cu(OTf)₂ (3.7 mg, 10 mol%), L4 (3.5mg, 12 mol%), carbazole pyrrole rings 1 (0.10 mmol), diethyl ketomalonates 2a (0.15 mmol) and 4Å Ms (50 mg, activated under flame dry for 10 min prior to use) was added Et₂O (1.0 mL) at rt under nitrogen atmosphere. Upon complete consumption of carbazole pyrrole rings 1 (TLC monitoring, about 24 h), the solvent was removed under reduced pressure, and the residue was purified by chromatography on silica gel column (hexanes/EtOAc = 15:1, v/v) to afford the desired product 3.

6. Characterization Data of Products

diethyl (S)-2-(1-(1-bromo-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-2-hydroxymalonate: 3a

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **3a** (41 mg, 92% yield, 90% ee) White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.09-8.06 (m, 2H), 7.60-7.59 (m, 1H), 7.47-7.44 (m, 1H), 7.36-7.35 (m, 1H), 7.20-7.17 (m, 1H), 7.03-7.02 (m, 1H), 6.127 (s, 1H), 4.38-4.30 (m, 4H), 4.16 (s, 1H), 1.85 (s, 3H), 1.84 (s, 3H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.32 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.6, 170.5, 141.1, 135.7, 131.2, 128.68, 128.66, 127.6, 124.3, 122.1, 121.8, 120.4, 120.3, 119.6, 114.1, 109.0, 104.3, 102.3, 78.0, 62.6, 14.09, 14.07, 10.7, 10.0. HRMS (ESI) calcd for C₂₅H₂₅N₂NaO₅Br [(M+Na⁺)]: 535.0839, found: 535.0839. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 19.09 min (minor), 25.96 min (major).

diethyl (S)-2-(1-(1-bromo-3,6-di-tert-butyl-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-2-

hydroxymalonate: 3b

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **3b** (60 mg, 96% yield, 94% ee) White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.07-8.06 (m, 2H), 7.598-7.597 (m, 1H), 7.50-7.48 (m, 1H), 6.94 (d, J = 8.4 Hz, 1H), 6.01 (s, 1H), 4.38-4.30 (m, 4H), 4.14 (s, 1H), 1.85 (s, 3H), 1.84 (s, 3H), 1.452 (s, 9H), 1.449 (s, 9H), 1.35 (t, J = 7.2 Hz, 3H), 1.33 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.6, 170.5, 145.5, 144.7, 139.5, 134.2, 128.8, 128.7, 125.3, 124.3, 120.2, 116.3, 115.8, 113.8, 108.5, 104.0, 101.8, 78.0, 62.57, 62.56, 34.8, 34.7, 31.9, 31.8, 14.10, 14.08, 10.8, 10.1. HRMS (ESI) calcd for C₃₃H₄₂N₂O₅Br [(M+H⁺)]: 625.2272, found: 625.2273. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 8.77 min (minor), 9.76 min (major).

diethyl (S)-2-(1-(1-bromo-3,6-diphenyl-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-2-

hydroxymalonate: 3c

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **3c** (57 mg, 86% yield, 91% ee). Yllow oily liquid.

¹H NMR (600 MHz, CDCl₃): δ 8.35-8.33 (m, 2H), 7.88 (s, 1H), 7.74-7.70 (m, 5H), 7.52-7.49 (m, 4H), 7.41-7.37 (m, 2H), 7.13 (d, *J* = 8.4 Hz, 1H), 6.18 (s, 1H), 4.42-4.35 (m, 4H), 4.21 (s, 1H), 1.95 (s, 3H), 1.94 (s, 3H), 1.38 (t, *J* = 7.2 Hz, 3H), 1.35 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.6, 170.4, 141.3, 140.9, 140.1, 136.1, 135.5, 135.4, 130.6, 128.9, 128.8, 128.73, 128.70, 127.33, 127.26, 127.0, 124.7, 121.0, 119.0, 118.1, 114.1, 109.4, 104.4, 102.6, 78.0, 62.6, 14.10, 14.09, 10.8, 10.1. HRMS (ESI) calcd for C₃₇H₃₃N₂NaO₅Br [(M+Na⁺)]: 687.1465, found: 687.1463. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 21.63 min (minor), 31.32 min (major).

diethyl (S)-2-(2,5-dimethyl-1-(1,3,6-tribromo-9H-carbazol-9-yl)-1H-pyrrol-3-yl)-2-

hydroxymalonate: 3d

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **3d** (52 mg, 77% yield, 90% ee) Yellow solid.

¹H NMR (600 MHz, CDCl₃): δ 8.17-8.14 (m, 2H), 7.75-7.74 (m, 1H), 7.57-7.56 (m, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.12 (s, 1H), 4.37-4.29 (m, 4H), 4.16 (s, 1H), 1.82 (s, 3H), 1.81 (s, 3H), 1.34 (t, J = 7.2 Hz, 3H), 1.31 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.4, 170.3, 140.0, 135.0, 133.4, 131.2, 128.53, 128.49 124.2, 123.4, 122.6, 120.9, 115.1, 114.4, 114.2, 110.7, 104.8, 103.1, 77.8, 62.7, 14.08, 14.06, 10.6, 10.0. HRMS (ESI) calcd for C₂₅H₂₃N₂NaO₅Br₃ [(M+Na⁺)]: 690.9049, found: 690.9050. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 30.41 min (minor), 46.94 min (major).

diethyl (S)-2-(1-(1-bromo-3,6-diiodo-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-2-

hydroxymalonate: 3e

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **3e** (54 mg, 71% yield, 93% ee) Colorless liquid.

¹H NMR (600 MHz, CDCl₃): δ 8.36-8.32 (m, 2H), 7.90 (s, 1H), 7.74-7.73 (m, 1H), 6.81 (d, *J* = 13.8 Hz, 1H), 6.11 (s, 1H), 4.37-4.29 (m, 4H), 4.14 (s, 1H), 1.810 (s, 3H), 1.805 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H), 1.31 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.4, 170.3, 140.3, 139.1, 135.2, 129.5, 128.6, 128.52, 128.49, 124.6, 121.3, 114.4, 111.1, 104.8, 103.4, 85.0, 83.9, 77.8, 62.7, 14.08, 14.07, 10.7, 10.0. HRMS (ESI) calcd for C₂₅H₂₃N₂NaO₅BrI₂ [(M+Na⁺)]: 786.8772, found: 786.8773. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 30.41 min (minor), 46.94 min (major).

Unit

 CPGAX
 Iable>

 ???A 220nm
 Peak# Ret. Time
 Area
 Height
 Conc.

 1
 40.867
 275606
 3537
 3.555

 2
 45.889
 7476959
 116384
 96.445

 Total
 775265
 119921
 1

diethyl (S)-2-(1-(3,6-di-tert-butyl-1-chloro-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-2-

hydroxymalonate: 3f

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **3f** (51 mg, 88% yield, 94% ee) Yellow oily liquid.

¹H NMR (600 MHz, CDCl₃): δ 8.08-8.01 (m, 2H), 7.50-7.49 (m, 1H), 7.41 (s, 1H), 6.96 (d, *J* = 9.0 Hz, 1H), 6.09 (s, 1H), 4.38-4.31 (m, 4H), 4.15 (s, 1H), 1.86 (s, 3H), 1.85 (s, 3H), 1.454 (s, 9H), 1.448 (s, 9H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.33 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151MHz, CDCl₃): δ 170.7, 170.5, 145.2, 144.7, 139.5, 133.2, 128.7, 128.6, 125.5, 125.3, 124.3, 120.5, 116.4, 115.3, 115.2, 113.7, 108.5, 103.9, 78.0, 62.58, 62.55, 34.80, 34.78, 31.9, 31.8, 14.1, 14.0, 10.7, 10.0. HRMS (ESI) calcd for C₃₃H₄₂N₂O₅Cl [(M+H⁺)]: 581.2777, found: 581.2775. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 10.82 min (minor), 12.49 min (major).

diethyl (S)-2-(1-(1-chloro-3,6-diphenyl-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-2-

hydroxymalonate: 3g

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **3g** (38 mg, 61% yield, 87% ee) Colorless oil liquid.

¹H NMR (600 MHz, CDCl₃): δ 8.35-8.28 (m, 2H), 7.74-7.69 (m, 6H), 7.52-7.50 (m, 4H), 7.41-7.37 (m, 2H), 7.15 (d, *J* = 7.8 Hz, 1H), 6.16 (s, 1H), 4.41-4.34 (m, 4H), 4.20 (s, 1H), 1.95 (s, 3H), 1.93 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H), 1.35 (t, *J* = 7.8 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.6, 170.4, 142.3, 140.9, 140.2, 135.8, 135.6, 134.4, 128.93, 128.85, 128.7, 128.6, 127.4, 127.30, 127.25, 127.0, 124.8, 121.2, 119.1, 117.5, 116.4, 114.0, 109.4, 104.4, 78.0, 70.3, 62.7, 62.6, 14.08, 14.06, 10.7, 10.0. HRMS (ESI) calcd for C₃₇H₃₄N₂O₅Cl [(M+H⁺)]: 621.2151, found: 5621.2148. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 39.35 min (minor), 57.73 min (major).

diethyl (S)-2-(1-(3,6-dibromo-1-chloro-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-2-

hydroxymalonate: 3h

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **3h** (34 mg, 54% yield, 88% ee) White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.172-8.170 (m, 1H), 8.10-8.09 (m, 1H), 7.59-7.56 (m, 2H), 6.94 (d, J = 9.0 Hz, 1H), 6.10 (s, 1H), 4.37-4.30 (m, 4H), 4.14 (s, 1H), 1.83 (s, 3H), 1.82 (s, 3H), 1.34 (t, J = 7.2 Hz, 3H), 1.31 (t, J = 6.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.4, 170.3, 142.3, 140.0, 134.0, 130.8, 128.5, 128.4, 124.3, 123.5, 122.1, 121.1, 117.2, 115.0, 114.3, 113.9, 110.7, 104.7, 77.9, 62.69, 62.67, 14.06, 14.04, 10.6, 9.9. HRMS (ESI) calcd for C₂₅H₂₃N₂NaO₅Br₂Cl [(M+Na⁺)]: 646.9554, found: 646.9554. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 30.08 min (minor), 42.69 min (major).

diethyl (S)-2-(1-(3,6-di-tert-butyl-1-iodo-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-2-

hydroxymalonate: 3i

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **3i** (44.5 mg, 66% yield, 92% ee) Yellow oily liquid.

¹H NMR (600 MHz, CDCl₃): δ 8.10-8.07 (m, 2H), 7.88-7.87 (m, 1H), 7.48-7.46 (m, 1H), 6.89 (d, J = 8.4 Hz, 1H), 6.14 (s, 1H), 4.38-4.29 (m, 4H), 4.14 (s, 1H), 1.84 (s, 3H), 1.83 (s, 3H), 1.45 (s, 9H), 1.44 (s, 9H), 1.36 (t, J = 7.2 Hz, 3H), 1.33 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.5, 144.8, 139.6, 136.7, 140.1, 136.1, 135.7, 128.98, 128.95, 125.2, 123.5, 120.0, 116.7, 116.1, 114.1, 108.5, 104.3, 78.0, 70.3, 62.59, 62.56, 34.8, 34.6, 31.9, 31.8, 14.2, 14.1, 11.1, 10.4. HRMS (ESI) calcd for C₃₃H₄₂N₂O₅I [(M+H⁺)]: 673.2133, found: 673.2133. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 11.10 min (minor), 12.86 min (major).

diethyl (S)-2-(2,5-dimethyl-1-(1-phenyl-9H-carbazol-9-yl)-1H-pyrrol-3-yl)-2-hydroxymalonate: 3j

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **3j** (36 mg, 71% yield, 93% ee) Pink solid.

¹H NMR (600 MHz, CDCl₃): δ 8.16-8.13 (m, 2H), 7.42-7.36 (m, 2H), 7.34-7.30 (m, 2H), 7.21-7.17 (m, 3H), 7.12-7.11 (m, 2H), 6.85 (d, *J* = 7.8 Hz, 1H), 5.63 (s, 1H), 4.41-4.29 (m, 4H), 3.56 (s, 1H), 1.74 (s, 3H), 1.66 (s, 3H), 1.35 (t, *J* = 6.6 Hz, 3H), 1.32 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.1, 169.8, 141.0, 137.2, 136.7, 129.4, 128.7, 127.4, 126.9, 126.64, 126.63, 126.5, 122.7, 121.2, 121.1, 120.8, 120.2, 119.7, 114.0, 108.9, 104.2, 77.9, 62.4, 62.3, 14.1, 14.0, 10.7, 10.2. HRMS (ESI) calcd for C₃₁H₃₁N₂O₅ [(M+H⁺)]: 511.2227, found: 511.2226. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 19.52 min (minor), 27.81 min (major).

3k

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **3k** (43 mg, 82% yield, 96% ee) White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.14-8.13 (m, 2H), 7.41-7.31 (m, 3H), 7.29-7.28 (m, 1H), 6.99 (s, 4H), 6.87 (d, *J* = 7.8 Hz, 1H), 5.63 (s, 1H), 4.40-4.29 (m, 4H), 3.37 (s, 1H), 2.36 (s, 3H), 1.72 (s, 3H), 1.68 (s, 3H), 1.36 (t, *J* = 7.2 Hz, 3H), 1.31 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.1, 169.8, 140.9, 136.7, 136.2, 134.3, 129.5, 128.5, 128.1, 126.88, 126.86, 126.6, 126.5, 122.6, 121.2, 121.1, 120.8, 120.2, 119.5, 114.2, 108.9, 104.1, 78.0, 62.4, 62.3, 21.1, 14.1, 14.0, 10.7, 10.1. HRMS (ESI) calcd for C₃₂H₃₃N₂O₅ [(M+H⁺)]: 525.2384, found: 525.2384. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 23.90 min (minor), 29.67 min (major).

31

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **31** (26 mg, 50% yield, 96% ee) White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.15-8.13 (m, 2H), 7.41-7.29 (m, 4H), 7.11-7.09 (m, 1H), 7.04-7.03 (m, 1H), 6.95-6.94 (m, 1H), 6.92 (s, 1H), 6.86 (d, *J* = 7.8 Hz, 1H), 5.70 (s, 1H), 4.41-4.25 (m, 4H), 3.31 (s, 1H), 2.28 (s, 3H), 1.76 (s, 3H), 1.68 (s, 3H), 1.36 (t, *J* = 7.2 Hz, 3H), 1.29 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.1, 169.6, 140.1, 137.1, 137.0, 136.7, 129.7, 129.4, 128.3, 126.8, 126.7, 126.64, 126.60, 124.3, 122.6, 121.18, 121.16, 120.8, 120.2, 119.4, 114.5, 108.9, 103.5, 62.5, 62.4, 34.4, 31.2, 14.09, 14.06, 10.6, 10.1. HRMS (ESI) calcd for C₃₂H₃₃N₂O₅ [(M+H⁺)]: 525.2384, found: 525.2384. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 17.38 min (minor), 19.71 min (major).

diethyl (S)-2-(1-(1-(4-(tert-butyl)phenyl)-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-2-

hydroxymalonate: 3m

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **3m** (20 mg, 35% yield, 89% ee) White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.20-8.19 (m, 2H), 7.41-7.37 (m, 2H), 7.34-7.31 (m, 2H), 7.20-7.18 (m, 2H), 7.03-7.01 (m, 2H), 6.79 (d, *J* = 8.4 Hz, 1H), 5.43 (s, 1H), 4.17-4.10 (m, 4H), 3.40 (s, 1H), 1.37 (s, 3H), 1.23 (s, 3H), 0.94-0.92 (m, 15H). ¹³C NMR (151 MHz, CDCl₃): δ 170.2, 170.1, 149.5, 141.0, 136.8, 134.0, 129.4, 128.3, 126.8, 126.7, 126.64, 126.60, 124.3, 122.6, 121.18, 121.16, 120.8, 120.2, 119.4, 114.5, 108.9, 103.5, 62.5, 62.4, 34.4, 31.2, 14.09, 14.06, 10.6, 10.1. HRMS (ESI) calcd for C₃₅H₃₉N₂O₅ [(M+H⁺)]: 567.2853, found: 567.2855. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 18.54 min (minor), 26.52 min (major).

diethyl (S)-2-(1-(1-(3,5-dimethylphenyl)-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-2-

hydroxymalonate: 3n

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **3n** (25 mg, 46% yield, 87% ee) White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.14-8.12 (m, 2H), 7.4-7.38 (m, 1H), 7.36-7.31 (m, 2H), 7.29-7.27 (m, 1H), 6.87-6.86 (m, 2H), 6.73 (s, 2H), 5.71 (s, 1H), 4.41-4.21 (m, 4H), 3.09 (s, 1H), 2.25 (s, 6H), 1.80 (s, 3H), 1.64 (s, 3H), 1.36 (t, *J* = 7.2 Hz, 3H), 1.26 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.1, 169.4, 140.1, 137.1, 137.0, 136.7, 129.2, 128.2, 127.2, 126.9, 126.8, 126.7, 126.5, 122.6, 121.21, 121.17, 120.8, 120.2, 119.5, 113.8, 108.9, 104.4, 78.1, 62.4, 62.2, 21.0, 14.1, 14.0, 10.9, 10.0. HRMS (ESI) calcd for C₃₃H₃₅N₂O₅ [(M+H⁺)]: 539.2540, found: 539.2540. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 21,77 min (major), 23.24 min (minor).

diethyl (S)-2-(1-(1-ethyl-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-2-hydroxymalonate: 30

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **30** (21 mg, 45% yield, 91% ee) Colorless liquid.

¹H NMR (600 MHz, CDCl₃): δ 8.09-8.08 (m, 1H), 7.90-7.97 (m, 1H), 7.42-7.39 (m, 1H), 7.32-7.28 (m, 3H), 6.93 (d, *J* = 8.4 Hz 1H), 6.13 (s, 1H), 4.39-4.31 (m, 4H), 4.16 (s, 1H), 2.32 (q, *J* = 12.0 Hz, 2H), 1.85 (s, 6H), 1.34 (t, *J* = 7.2 Hz, 3H), 1.33 (t, *J* = 7.2 Hz, 3H), 1.17 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.5, 170.4, 140.9, 137.3, 128.2, 128.1, 127.0, 126.74, 126.65, 122.3, 121.3, 121.2, 121.1, 120.1, 118.1, 114.1, 108.6, 104.5, 78.0, 62.6, 21.0, 14.5, 14.04, 14.02, 10.7, 10.0. HRMS (ESI) calcd for C₂₇H₃₀N₂KO₅ [(M+K⁺)]: 501.1786, found: 501.1788. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 15.14 min (minor), 19.71 min (major).

diethyl (S)-2-(2,5-dimethyl-1-(1-vinyl-9H-carbazol-9-yl)-1H-pyrrol-3-yl)-2-hydroxymalonate: 3p

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **3p** (36 mg, 78% yield, 85% ee) Colorless liquid.

¹H NMR (600 MHz, CDCl₃): δ 8.11-8.09 (m, 1H), 8.06-8.05 (m, 1H), 7.59-7.58 (m, 1H), 7.45-7.42 (m, 1H), 7.35-7.29 (m, 2H), 7.02 (d, *J* = 8.4 Hz, 1H), 6.16 (s, 1H), 5.98 (dd, *J* = 10.2 Hz, and 10.8 Hz, 1H), 5.65 (d, *J* = 18.6 Hz, 1H), 5.10 (d, *J* = 11.4 Hz, 1H), 4.40-4.32 (m, 4H), 4.18 (s, 1H), 1.85 (s, 3H), 1.83 (s, 3H), 1.35 (t, *J* = 7.2 Hz 3H), 1.34 (t, *J* = 7.2 Hz 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.5, 170.4, 140.6, 136.4, 130.5, 128.1, 127.9, 126.9, 124.3, 122.6, 121.2, 121.0, 120.2, 119.9, 116.4, 114.3, 108.5, 104.7, 77.9, 62.6, 14.0, 10.6, 9.9. HRMS (ESI) calcd for C₂₇H₂₈N₂NaO₅ [(M+Na⁺)]: 483.1890, found: 483.1889. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 17.06 min (minor), 23.44 min (major).

diethyl (S)-2-(1-(1-ethynyl-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-2-hydroxymalonate: 3q

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **3q** (32 mg, 70% yield, 95% ee) Colorless oil liquid.

¹H NMR (600 MHz, CDCl₃): δ 8.11-8.10 (m, 2H), 7.57-7.56 (m, 1H), 7.47-7.45 (m, 1H), 7.36-7.33 (m, 1H), 7.29-7.27 (m, 1H), 7.06 (d, *J* = 7.8 Hz, 1H), 6.06 (s, 1H), 4.39-4.31 (m, 4H), 4.13 (s, 1H), 2.98 (s, 1H), 1.88 (s, 3H), 1.83 (s, 3H), 1.36 (t, *J* = 7.8 Hz, 3H), 1.34 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.6, 170.4, 140.5, 140.4, 131.4, 129.1, 129.0, 127.3, 122.2, 121.4, 121.1, 120.9, 120.7, 120.4, 113.4, 108.8, 104.6, 103.8, 81.4, 78.1, 62.6, 62.5, 14.1, 10.6, 10.0. HRMS (ESI) calcd for C₂₇H₂₇N₂O₅ [(M+H⁺)]: 459.1914, found: 459.1916. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 22.82 min (minor), 44.55 min (major).

diethyl (S)-2-(1-(1-(cyclopropylethynyl)-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-2-

hydroxymalonate: 3r

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **3r** (25 mg, 50% yield, 88% ee) White solid.

¹H NMR (600 MHz, CDCl₃): δ 8.07 (d, *J* = 7.8 Hz, 1H), 8.01 (d, *J* = 7.8 Hz, 1H), 7.46-7.45 (m, 1H), 7.42-7.40 (m, 1H), 7.32-7.30 (m, 1H), 7.24-7.21 (m, 1H), 6.89 (d, *J* = 7.8 Hz, 1H), 6.07 (s, 1H), 4.38-4.31 (m, 4H), 4.08 (s, 1H), 1.92 (s, 3H), 1.76 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H), 1.33 (t, *J* = 6.6 Hz, 3H), 1.26 (s, 1H), 0.75-0.73 (m, 2H), 0.62-0.61 (m, 2H). ¹³C NMR (151 MHz, CDCl₃): δ 170.6, 170.5, 140.6, 139.0, 131.2, 128.7, 128.5, 127.0, 122.0, 121.3, 121.0, 120.7, 120.3, 119.7, 113.6, 108.7, 106.7, 103.8, 98.0, 78.0, 69.2, 62.6, 62.5, 14.1, 14.0, 10.8, 9.9, 8.83, 8.75. HRMS (ESI) calcd for C₃₀H₃₁N₂O₅ [(M+H⁺)]: 499.2227, found: 499.2229. HPLC analysis of the product: Daicel Chiralpak IA-3 column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 16.95 min (minor), 21.06 min (major).

diethyl-2-(2,5-dimethyl-1-(2-phenyl-1H-indol-1-yl)-1H-pyrrol-3-yl)-2-hydroxymalonate: 3s

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **3s** (41 mg, 89% yield, 93% ee) Yellow oily liquid.

¹H NMR (600 MHz, CDCl₃): δ 7.68-7.67 (m, 1H), 7.32-7.27 (m, 3H), 7.25-7.19 (m, 4H), 6.97-6.96 (m, 1H), 6.91 (s, 1H), 6.10 (s, 1H), 4.35-4.28 (m, 4H), 4.15 (s, 1H), 1.85 (s, 3H), 1.82 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.4, 139.2, 138.0, 130.3, 128.8, 128.0, 127.4, 126.6, 125.6, 123.5, 121.6, 120.8, 114.3, 109.1, 104.6, 101.1, 77.9, 62.6, 13.99, 13.96, 10.7, 10.0. HRMS (ESI) calcd for C₂₇H₂₈KN₂O₅ [(M+K⁺)]: 499.1630, found: 499.1630. 93% ee. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 28.05 min (major), 38.02 min (minor).

diethyl-2-(2,5-dimethyl-1-(2-(p-tolyl)-1H-indol-1-yl)-1H-pyrrol-3-yl)-2-hydroxymalonate: 3t

On a 0.1 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **3t** (41 mg, 86% yield, 91% ee) Yellow oily liquid.

¹H NMR (600 MHz, CDCl₃): δ 7.67-7.65 (m, 1H), 7.23-7.19 (m, 2H), 7.12-7.07 (m, 4H), 6.96-6.94 (m, 1H), 6.86 (s, 1H), 6.09 (s, 1H), 4.35-4.28 (m, 4H), 4.14 (s, 1H), 2.33 (s, 3H), 1.85 (s, 3H), 1.81 (s, 3H), 1.30 (t, *J* = 7.2 Hz, 3H), 1.28 (t, *J* = 8.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.42, 170.41, 139.4, 137.92, 137.89, 129.5, 127.5, 127.4, 126.5, 125.7, 123.2, 121.5, 120.6, 114.2, 109.0, 104.5, 100.5, 77.9, 62.6, 21.1, 14.0, 13.9, 10.7, 10.0. HRMS (ESI) calcd for C₂₈H₃₀N₂KO₅ [(M+K⁺)]: 513.1786, found: 513.1786. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 29.94 min (minor), 31.95 min (major).

General Procedure A: To a mixture of CuOTf (2.1 mg, 10 mol%), L4 (3.5mg, 12 mol%), carbazole pyrrole rings 1 (0.10 mmol) and ethyl trifluoropyruvate 2b (0.15 mmol) was added Et_2O (1.0 mL) at rt under nitrogen atmosphere. Upon complete consumption of carbazole pyrrole rings 1 (TLC monitoring, about 24 h), the solvent was removed under reduced pressure, and the residue was purified by chromatography on silica gel column (hexanes/EtOAc = 15:1, v/v) to afford the desired product 4.

General Procedure B: To a mixture of CuOTf (2.1 mg, 10 mol%), L4 (3.5mg, 12 mol%), carbazole pyrrole rings 1 (0.10 mmol) and ethyl trifluoropyruvate 2b (0.15 mmol) was added Et₂O (1.0 mL) at 0 °C under nitrogen atmosphere. Upon complete consumption of carbazole pyrrole rings 1 (TLC monitoring, about 24 h), the solvent was removed under reduced pressure, and the residue was purified by chromatography on silica gel column (hexanes/EtOAc = 15:1, v/v) to afford the desired product 4.

Ethyl -2-((S)-1-(1-bromo-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-3,3,3-trifluoro-2-hydroxypropanoate: 4a

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **4a** (21 mg, 41% yield, 97% ee, 92:8 dr). colorless liquid.

¹H NMR (600 MHz, CDCl₃): δ 8.10-8.07 (m, 2H), 7.60-7.58 (m, 1H), 7.49-7.47 (m, 1H), 7.38-7.35 (m, 1H), 7.20-7.18 (m, 1H), 7.02 (d, J = 8.4 Hz, 0.92H), 6.99 (d, J = 8.4 Hz, 0.08H), 6.19 (s, 1H), 4.46-4.35 (m, 2H), 4.20 (s, 0.92H), 4.13 (s, 0.08H), 1.96 (s, 0.24H), 1.88 (s, 2.76H), 1.85 (s, 3H), 1.44 (t, J = 6.6 Hz, 0.24H), 1.37 (t, J = 7.2 Hz, 2.76H). ¹³C NMR (151 MHz, CDCl₃): δ 169.8, 141.0, 135.6, 131.2, 130.1, 129.4, 127.7, 124.4, 122.2, 121.9, 120.43, 120.38, 119.7, 110.5, 109.0, 104.39, 104.37, 102.1, 63.9, 14.0, 10.7, 9.8. ¹⁹F NMR (566 MHz, CDCl₃): δ -76.4 (major), -77.1 (minor). HRMS (ESI) calcd for C₂₃H₂₁N₂O₃BrF₃ [(M+H⁺)]: 509.0682, found: 509.0682. HPLC analysis of the product: Daicel Chiralpak IA-3 column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 9.24 min (minor), 11.39 min (major).

ethyl -3,3,3-trifluoro-2-hydroxy-2-((S)-1-(1-(4-methoxyphenyl)-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)propanoate: 4b

On a 0.1 mmol scale, Prepared following general procedure B and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **4b** (35 mg, 56% yield, 93% ee, 94:6 dr). colorless liquid.

¹H NMR (600 MHz, CDCl₃): δ 8.08-8.06 (m, 2H), 7.592-7.589 (m, 1H), 7.52-7.50 (m, 1H), 6.93 (d, J = 8.4 Hz, 0.94H), 6.90 (d, J = 8.4 Hz, 0.06H), 6.16 (s, 1H), 4.48-4.35 (m, 2H), 4.20 (s, 0.94H), 4.13 (s, 0.06H), 1.95 (s, 0.18H), 1.88 (s, 2.82H), 1.86 (s, 2.82H), 1.454 (s, 9H), 1.451 (s, 9H), 1.38 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 169.8, 145.7, 144.9, 139.5, 134.1, 130.2, 129.4, 128.7, 125.4, 124.4, 120.3, 116.3, 115.9, 110.3, 108.5 (major), 108.4 (minor), 104.1, 101.6, 63.9, 34.9, 34.8, 31.9, 31.8, 14.0, 10.8, 9.9. ¹⁹F NMR (566 MHz, CDCl₃): δ -76.4 (major), -77.0 (minor). HRMS (ESI) calcd for C₃₁H₃₇N₂O₃BrF₃ [(M+H⁺)]: 621.1934, found: 621.1934. HPLC analysis of the product: Daicel Chiralpak IA-3 column; hexane/2-propanol = 97/3, 0.2 mL/min. Retention times: 19.69 min (minor),

ethyl -2-((S)-2,5-dimethyl-1-(1-(p-tolyl)-9H-carbazol-9-yl)-1H-pyrrol-3-yl)-3,3,3-trifluoro-2-

hydroxypropanoate: 4c

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **4c** (32 mg, 62% yield, 95% ee, 95:5 dr) colorless liquid.

¹H NMR (600 MHz, CDCl₃): δ 8.13-8.11 (m, 2H), 7.42-7.39 (m, 1H), 7.36-7.31 (m, 2H), 7.25-7.24 (m, 1H), 7.00 (, J = 6.0 Hz, 0.20H), 6.97-6.93 (m, 3.8H), 6.79 (d, J = 7.8 Hz, 0.95H), 6.72 (d, J = 8.4 Hz, 0.05H), 5.77 (s, 0.05H), 5.72 (s, 0.95H), 4.52-4.37 (m, 2H), 3.79 (s, 0.95H), 3.65 (s, 0.05H), 2.32 (s, 3H), 1.84 (s, 2.85H), 1.81 (s, 0.15H), 1.69 (s, 0.15H), 1.65 (s, 2.84H), 1.42 (t, J = 6.6 Hz, 2.85H), 1.36 (t, J = 7.8 Hz, 0.15H). ¹³C NMR (151 MHz, CDCl₃): δ 169.4, 140.9, 136.8 (major), 136.7 (minor), 136.3, 134.1, 129.63 (minor), 129.57 (major), 128.4 (major), 128.3 (minor), 128.2 (minor), 128.0 (major), 127.3 (minor), 127.2 (major), 126.9 (minor), 126.5 (major), 126.4 (minor), 122.7 (major), 122.6 (minor), 13.97 (minor), 10.8 (minor), 10.7 (major), 10.2 (major), 10.1 (minor). ¹⁹F NMR (566 MHz, CDCl₃): δ -76.8 (minor), -77.0 (major). HRMS (ESI) calcd for C₃₀H₂₈N₂O₃F₃ [(M+H⁺)]: 521.2047, found: 521.2047. HPLC analysis of the product: Daicel Chiralpak IA-3 column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 8.3 min (minor), 13.34 min (major).

min (m

ethyl -3,3,3-trifluoro-2-hydroxy-2-((S)-1-(1-(4-methoxyphenyl)-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)propanoate: 4d

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product 4d (22 mg, 41% yield, 92% ee, 87:13 dr) colorless liquid.

¹H NMR (600 MHz, CDCl₃): δ 8.13-8.11 (m, 2H), 7.42-7.40 (m, 1H), 7.36-7.31 (m, 2H), 7.25-7.24 (m, 1H), 7.02 (d, J = 8.4 Hz, 0.26H), 6.99 (d, J = 8.4 Hz, 1.74H), 6.80 (d, J = 8.4 Hz, 0.87H), 6.73 (d, J = 8.4 Hz, 0.26H), 6.70 (d, J = 7.8 Hz, 0.13H), 6.66 (d, J = 7.8 Hz 1.74H), 5.79 (s, 0.13H), 5.75 (s, 0.87H), 4.52-4.39 (m, 2H), 3.92 (s, 0.87H), 3.82 (s, 0.13H), 3.80 (s, 3H), 1.85 (s, 2.61H), 1.81 (s, 0.39H), 1.68 (s, 3H), 1.42 (t, J = 7.2 Hz, 2.63H), 1.35 (t, J = 6.6 Hz, 0.37H). ¹³C NMR (151 MHz, CDCl₃): δ 169.4, 158.6 (minor), 158.4 (major), 141.0 (minor), 140.9 (major), 136.82 (major), 136.80 (minor), 129.8 (minor), 129.7 (major), 129.55 (major), 128.52 (minor), 129.43 (major), 128.28, 127.4 (minor), 127.3 (major), 127.0 (major), 126.9 (minor), 120.24 (minor), 120.21 (major), 119.5 (major), 119.4 (minor), 113.0 (minor), 112.7 (major), 108.7 (minor), 109.6, 108.8 (major), 108.7 (minor), 104.4 (major), 104.3 (minor), 63.74 (major), 63.66 (minor), 55.00 (major), 54.96 (minor), 14.0, 10.8 (minor), 10.7 (major), 10.0 (minor). ¹⁹F NMR (566 MHz, CDCl₃): δ -76.6 (minor), -77.2 (major). HRMS (ESI) calcd for C₃₀H₂₈N₂O₄F₃ [(M+H⁺)]: 537.1996, found: 537.1998. HPLC analysis of the product: Daicel Chiralpak IA-3 column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 11.16 min (minor), 22.75 min (major).

ethyl -2-((S)-1-(1-(4-(tert-butyl)phenyl)-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-3,3,3-

trifluoro-2-hydroxypropanoate: 4e

On a 0.1 mmol scale, Prepared following general procedure B and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **4e** (19 mg, 34% yield, 95% ee, > 20:1 dr) colorless liquid.

¹H NMR (600 MHz, CDCl₃): δ 8.14-8.12 (m, 2H), 7.41-7.31 (m, 4H), 7.18-7.17 (m, 2H), 7.02-7.01 (m, 2H), 6.71 (d, *J* = 7.8 Hz, 1H), 5.67 (s, 1H), 4.54-4.35 (m, 2H), 3.97 (s, 1H), 1.81 (s, 3H), 1.60 (s, 3H), 1.41 (t, *J* = 7.2 Hz, 3H), 1.31 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 169.6, 149.6, 141.2, 137.0, 134.1, 129.6, 128.3, 128.2, 127.5, 127.0, 126.8, 124.2, 122.8, 121.4, 121.3, 121.0, 120.2, 119.5, 110.4, 108.9, 103.8, 63.7, 34.4, 31.2, 14.0, 10.6, 10.0. ¹⁹F NMR (566 MHz, CDCl₃): δ -76.2 (minor), -76.6 (major). HPLC analysis of the product: Daicel Chiralpak IA-3 column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 11.16 min (minor), 22.75 min (major). HRMS (ESI) calcd for C₃₃H₃₃N₂KO₃F₃ [(M+K⁺)]: 601.2075, found: 601.2076. HPLC analysis of the product: Daicel Chiralpak IA-3 column; hexane/2-propanol = 90/10, 0.5 mL/min.

<Chromatogram>

ethyl -2-((S)-1-(1-ethyl-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-3,3,3-trifluoro-2-

hydroxypropanoate: 4f

On a 0.1 mmol scale, Prepared following general procedure B and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **4f** (17 mg, 37% yield, 87% ee, 91:9 dr) colorless liquid.

¹H NMR (600 MHz, CDCl₃): δ 8.10-8.08 (m, 1H), 8.00-7.97 (m, 1H), 7.44-7.41 (m, 1H), 7.33-7.29 (m, 3H), 6.93 (d, J = 7.8 Hz, 1H), 6.21 (s, 0.91H), 6.18 (s, 0.09H), 4.51-4.36 (m, 2H), 4.18 (s, 0.91H), 4.16 (s, 0.09H), 2.27-2.19 (m, 2H), 1.91 (s, 3H), 1.85 (s, 3H), 1.39 (t, J = 6.6 Hz, 3H), 1.13 (t, J = 7.8 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 169.7, 140.8, 137.2, 129.5, 128.9, 127.0 (minor), 126.9 (major), 126.8 (major), 126.7 (minor), 122.4, 121.4, 121.3, 121.2, 120.23 (minor), 120.17 (major), 118.2 (major), 118.1 (minor), 110.6, 108.6 (major), 108.4 (minor), 104.62, 104.60, 64.0 (minor), 63.9 (major), 20.9 (major), 20.8 (minor), 14.5, 14.0, 10.7, 9.9. ¹⁹F NMR (566 MHz, CDCl₃): δ -76.6 (major), -77.4 (minor). HRMS (ESI) calcd for C₂₅H₂₆N₂O₃F₃ [(M+H⁺)]: 459.1890, found: 459.1888. HPLC analysis of the product: Daicel Chiralpak IA-3 column; hexane/2-propanol = 95/5, 0.3 mL/min. Retention times: 15.22 min (minor), 21.15 min (major).

ethyl -2-((S)-2,5-dimethyl-1-(1-vinyl-9H-carbazol-9-yl)-1H-pyrrol-3-yl)-3,3,3-trifluoro-2-

hydroxypropanoate: 4g

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **4g** (25 mg, 56% yield, 90% ee, 87:13 dr), colorless liquid.

¹H NMR (600 MHz, CDCl₃): δ 8.11-8.05 (m, 2H), 7.57 (d, J = 7.8 Hz 1H), 7.47-7.44 (m, 1H), 7.35-7.30 (m, 2H), 7.02 (d, J = 8.4 Hz 1H), 6.24 (s, 0.87H), 6.22 (s, 0.13H), 5.84 (dd, J = 16.8 Hz, and10.8 Hz, 1H), 5.63 (d, J = 16.8 Hz, 1H), 5.11 (d, J = 10.8 Hz, 0.13H), 5.06 (d, J = 10.2 Hz, 0.87H), 4.52-4.37 (m, 2H), 4.20 (s, 0.86H), 4.17 (s, 0.13H), 1.97 (s, 0.39H), 1.89 (s, 2.61H), 1.84 (s, 3H), 1.45 (t, J = 7.2 Hz, 0.41H), 1.40 (t, J = 6.6 Hz, 2.62H). ¹³C NMR (151 MHz, CDCl₃): δ 169.8 (major), 169.6 (minor), 140.5 (major), 140.4 (minor), 136.4, 130.4 (major), 130.2 (minor), 130.0 (minor), 129.4 (major), 128.8, 127.1 (major), 126.9 (minor), 124.5 (minor), 124.4 (major), 122.63 (minor), 122.55 (major), 122.5 (major), 120.4 (minor), 120.3 (major), 120.0 (major), 119.9 (minor), 116.8 (minor), 116.5 (major), 110.9 (major), 110.4 (minor), 13.97 (major), 106.6, 9.9 (minor), 9.7 (major). ¹⁹F NMR (566 MHz, CDCl₃): δ -76.6 (major), -77.3 (minor). HRMS (ESI) calcd for C₂₅H₂₃N₂NaO₃F₃ [(M+Na⁺)]: 479.1553, found: 479.1552. HPLC analysis of the product: Daicel Chiralpak IA-3 column; hexane/2-propanol = 95/5, 0.3 mL/min. Retention times: 16.02 min (minor), 23.52 min (major).

Ethyl -2-((S)-1-(1-ethynyl-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-3,3,3-trifluoro-2bydrowypropopoto: 4b

hydroxypropanoate: 4h

On a 0.1 mmol scale, Prepared following general procedure B and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **4h** (26 mg, 57% yield, 90% ee, 94:6 dr), colorless liquid.

¹H NMR (600 MHz, CDCl₃): δ 8.09-8.07 (m, 2H), 7.54-7.53 (m, 1H), 7.46-7.43 (m, 1H), 7.34-7.31 (m, 1H), 7.25-7.23 (m, 1H), 7.02 (d, J = 8.4 Hz, 0.94H), 6.98 (d, J = 8.4 Hz, 0.06H), 6.10 (s, 1H), 4.48-4.32 (m, 2H), 4.11 (s, 0.06H), 4.09 (s, 0.94H), 2.86 (s, 0.06H), 2.79 (s, 0.94H), 1.98 (s, 0.18H), 1.88 (s, 2.83H), 1.80 (s, 2.82H), 1.78 (s, 0.18H), 1.42 (t, J = 7.2 Hz, 0.19H), 1.37 (t, J = 7.2 Hz, 2.84H). ¹³C NMR (151 MHz, CDCl₃): δ 169.8 (major), 169.7 (minor), 140.4 (major), 140.32 (minor), 140.31 (major), 131.7 (minor), 131.6 (major), 130.9 (minor), 130.3 (major), 129.8 (major), 129.7 (minor), 127.4 (major), 127.3 (minor), 122.3 (major), 122.2 (minor), 121.63 (major), 121.55 (minor), 121.3 (major), 121.2 (minor), 121.0 (minor), 120.9 (major), 120.8, 120.49 (minor), 120.47 (major), 103.8 (major), 109.4 (minor), 108.7 (major), 108.6 (minor), 104.6 (minor), 104.4 (major), 103.9 (minor), 103.8 (major), 81.2 (minor), 80.7 (major), 76.8 (major), 63.9 (minor), 63.8 (major), 64.0 (minor), 63.9 (major), 14.04 (minor), 14.01 (major), 10.6, 10.0 (minor), 9.7 (major). ¹⁹F NMR (566 MHz, CDCl₃): δ - 76.4 (major), -76.9 (minor). HRMS (ESI) calcd for C₂₅H₂₁N₂KO₃F₃ [(M+K⁺)]: 493.1136, found: 493.1134. HPLC analysis of the product: Daicel Chiralpak IA-3 column; hexane/2-propanol = 95/5, 0.3 mL/min. Retention times: 20.88 min (minor), 31.83 min (major).

ethyl -2-((S)-1-(1-(cyclopropylethynyl)-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-3,3,3-

On a 0.1 mmol scale, Prepared following general procedure B and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **4i** (33 mg, 66% yield, 90% ee, 95:5 dr) colorless liquid.

¹H NMR (600 MHz, CDCl₃): δ 8.08-8.07 (m, 1H), 8.03-8.01 (m, 1H), 7.46-7.42 (m, 2H), 7.34-7.31 (m, 1H), 7.25-7.22 (m, 1H), 6.85 (d, J = 8.4 Hz, 0.95H), 6.80 (d, J = 8.4 Hz, 0.05H), 6.19 (s, 0.95H), 6.17 (s, 0.05H), 4.53-4.41 (m, 2H), 4.20 (s, 0.95H), 4.15 (s, 0.05H), 1.92 (s, 0.15H), 1.90 (s, 2.86H), 1.89 (s, 2.86H), 1.85 (s, 0.15H), 1.44 (t, J = 7.2 Hz, 3H), 1.22-1.18 (m, 1H), 0.76-0.69 (m, 2H), 0.60-0.53 (m, 2H). ¹³C NMR (151 MHz, CDCl₃): δ 169.8, 140.6, 139.0, 131.3 (minor), 131.2 (major), 130.3, 129.1, 127.2 (major), 127.0 (minor), 126.8 (major), 126.7 (minor), 122.2, 121.5 (major), 121.4 (minor), 121.0, 120.1, 120.3, 119.8, 110.6, 109.5, 108.6 (major), 108.5 (minor), 105.6, 104.0, 97.8, 69.3, 63.9 (major), 63.8 (minor), 14.0, 10.8, 9.8 (major), 9.6 (minor), 8.8, 8.7. ¹⁹F NMR (566 MHz, CDCl₃): δ -76.4 (minor), -76.9 (major). HRMS (ESI) calcd for C₂₈H₂₅N₂KO₃F₃ [(M+K⁺)]: 533.1449, found: 533.1449. HPLC analysis of the product: Daicel Chiralpak IA-3 column; hexane/2-propanol = 95/5, 0.3 mL/min. Retention times: 15.56 min (minor), 24.08 min (major).

ethyl -2-(1-(9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-3,3,3-trifluoro-2-hydroxypropanoate:

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **4j** (18 mg, 41% yield, 92% ee) colorless liquid.

¹H NMR (600 MHz, CDCl₃): δ 8.13 (d, *J* = 7.8 Hz, 2H), 7.50-7.42 (m, 2H), 7.35-7.32 (m, 2H), 7.03 (d, *J* = 7.8 Hz, 1H), 6.98 (d, *J* = 8.4 Hz, 1H), 6.22 (s, 1H), 4.53-4.44 (m, 2H), 4.20 (s, 1H), 1.91 (s, 3H), 1.82 (s, 3H), 1.43 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 169.7, 140.0, 129.2, 128.3, 126.9, 126.7, 123.59 (q, *J* = 286.6 Hz), 121.4, 121.3, 121.10, 121.06, 120.61, 120.55, 110.3, 108.5, 108.3, 104.8, 64.0, 14.0, 10.6, 9.7. ¹⁹F NMR (566 MHz, CDCl₃): δ -76.9. HRMS (ESI) calcd for C₂₃H₂₂N₂O₃F₃ [(M+H⁺)]: 431.1577, found: 431.1576. HPLC analysis of the product: Daicel Chiralpak IA-3 column; hexane/2-propanol = 95/5, 0.5 mL/min. Retention times: 9.89 min (minor), 12.97 min (major).

222A 220nm

25

ethyl -2-((R)-2,5-dimethyl-1-(2-phenyl-1H-indol-1-yl)-1H-pyrrol-3-yl)-3,3,3-trifluoro-2-

hydroxypropanoate: 4k

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **4k** (17 mg, 37% yield, 94% ee, 95:5 dr) colorless liquid.

¹H NMR (600 MHz, CDCl₃): δ 7.67-7.66 (m, 1H), 7.28-7.20 (m, 5H), 7.14-7.12 (m, 2H), 6.95-6.93 (m, 1H), 6.89 (s, 1H), 6.15 (s, 0.95H), 6.12 (s, 0.05H), 4.44-4.28 (m, 2H), 4.14 (s, 1H), 1.97 (s, 0.15H), 1.86 (s, 2.86H), 1.83 (s, 2.85H), 1.77 (s, 0.15H), 1.40 (t, J = 6.6 Hz, 0.15H), 1.31 (t, J = 7.2 Hz, 2.85H). ¹³C NMR (151 MHz, CDCl₃): δ 169.7, 139.33, 138.0, 130.3, 128.9, 128.8, 128.1, 128.0, 126.6 (major), 126.5 (minor), 125.7, 123.7, 121.8, 120.8, 110.7, 109.1, 104.8, 101.4 (major), 101.2 (minor), 64.0 (minor), 63.9 (major), 13.9, 10.7, 9.8. ¹⁹F NMR (566 MHz, CDCl₃): δ -76.6 (major), -77.4 (minor). HRMS (ESI) calcd for C₂₅H₂₃N₂NaO₃F₃ [(M+Na⁺)]: 479.1553, found: 479.1554. HPLC analysis of the product: Daicel Chiralpak IA-3 column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 9.60 min (minor), 10.33 min (major).

ethyl -2-((R)-2,5-dimethyl-1-(2-(p-tolyl)-1H-indol-1-yl)-1H-pyrrol-3-yl)-3,3,3-trifluoro-2-

hydroxypropanoate: 41

On a 0.1 mmol scale, Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 15/1) to afford the product **4l** (20 mg, 42% yield, 96% ee, 90:10 dr) colorless liquid.

¹H NMR (600 MHz, CDCl₃): δ 7.67-7.65 (m, 1H), 7.25-7.20 (m, 2H), 7.10-7.09 (m, 2H), 7.03-7.02 (m, 2H), 6.94-6.93 (m, 1H), 6.87 (s, 0.10H), 6.85 (s, 0.90H), 6.16 (s, 0.90H), 6.13 (s, 0.10H), 4.48-4.31 (m, 2H), 4.14 (s, 1H), 2.33 (s, 3H), 1.99 (s, 0.30H), 1.87 (s, 2.71H), 1.83 (s, 2.70H), 1.77 (s, 0.31H), 1.41 (t, J = 7.2 Hz, 0.31H), 1.33 (t, J = 7.2 Hz, 2.71H). ¹³C NMR (151 MHz, CDCl₃): δ 169.7 (major), 169.6 (minor), 138.0, 137.9, 129.6 (minor), 129.5 (major), 128.9, 128.21 (minor), 128.15 (major), 127.5 (major), 127.2 (minor), 126.5 (major), 126.3 (minor), 125.79 (minor), 125.77 (major), 123.5, 121.7 (major), 121.6 (minor), 120.73 (minor), 121.70 (major), 110.7, 109.0 (major), 108.9 (minor), 13.9 (major), 10.67 (minor), 10.1 (minor), 9.8 (major). ¹⁹F NMR (566 MHz, CDCl₃): δ - 76.6 (major), -77.4 (minor). HRMS (ESI) calcd for C₂₆H₂₅N₂KO₃F₃ [(M+K⁺)]: 509.1449, found: 509.1449. HPLC analysis of the product: Daicel Chiralpak IA-3 column; hexane/2-propanol = 95/5, 0.5 mL/min. Retention times: 11.44 min (minor), 13.02 min (major).

(((A ZZUNM							
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.444	152049	6992	2.193		M	
2	13.026	6780554	307919	97.807		M	
Total		6932603	314911				

Gram-scale reaction

To a mixture of Cu(OTf)₂ (108.5 mg, 10 mol%), **L4** (105.99 mg, 12 mol%), carbazole pyrrole rings **1a** (3 mmol), diethyl ketomalonates **2a** (4.5 mmol) and 4Å Ms (1.5 g, activated under flame dry for 30 min prior to use) was added Et₂O (30.0 mL) at rt under nitrogen atmosphere. Upon complete consumption of carbazole pyrrole rings **1a** (TLC monitoring, about 24 h), the solvent was removed under reduced pressure, and the residue was purified by chromatography on silica gel column (hexanes/EtOAc = 5:1, v/v) to afford the desired product **3a**.

Procedure: **3a** (51.3 mg, 0.1 mmol) and NaOH (20 eq) were dissolved in H₂O/MeOH at 100 $^{\circ}$ C (oil bath heating) under nitrogen atmosphere. After stirring for 2 h at room temperature. When the reaction was completed as monitored by TLC. After dilute with a 1M aqueous solution of NaOH, then pour into a separating funnel. The aqueous phase is acidified with 4M HCl, and extracted five times with dichloromethane. The combined organic phase is dried over Na₂SO₄ and filtered to afford the product **5a**.

(S)-2-(1-(1-bromo-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-2-hydroxymalonic acid: 5a

On a 0.1 mmol scale, Prepared following general procedure and the reaction mixture was dried over Na_2SO_4 and filtered to afford the product **5a** (40 mg, 88% yield) White solid.

¹H NMR (600 MHz, (CD₃)₂SO): δ 8.30-8.27 (m, 2H), 7.67-7.66 (m, 1H), 7.53-7.25 (m, 4H), 6.84 (d, J = 7.8 Hz, 1H), 5.95 (s, 1H), 4.06 (s, 2H), 1.80 (s, 3H), 1.71 (s, 3H). ¹³C NMR (151 MHz, (CD₃)₂SO): δ 174.0, 173.9, 140.7, 135.3, 131.1, 128.0, 126.92, 126.87, 123.9, 122.6, 121.9, 121.0, 120.4, 119.8, 108.5, 104.9, 101.4, 75.5, 10.4, 9.3. HRMS (ESI) calcd for C₂₁H₁₈N₂O₅Br [(M+H⁺)]: 457.0394, found: 457.0390.

Procedure: **3a** (51.3 mg, 0.1 mmol) and NBS (1.0 eq) were dissolved in THF at rt under nitrogen atmosphere. After stirring for 24 h at room temperature. When the reaction was completed as monitored by TLC. After filtration and evaporation in vacuo, the residuewas purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v: v = 5:1) to afford the product **6a**.

diethyl (R)-2-(4-bromo-1-(1-bromo-9H-carbazol-9-yl)-2,5-dimethyl-1H-pyrrol-3-yl)-2-

hydroxymalonate: 6a

On a 0.1 mmol scale, Prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 5/1) to afford the product **6a** (56 mg, 95% yield, 92% ee) White solid.

¹H NMR (600 MHz, (CDCl₃): δ 8.09-8.06 (m, 2H), 7.60-7.59 (m, 1H), 7.49-7.47 (m, 1H), 7.38-7.36 (m, 1H), 7.21-7.18 (m, 1H), 7.08 (d, *J* = 7.8 Hz, 1H), 4.41-4.37 (m, 1H), 4.30-4.26 (m, 4H), 1.832 (s, 3H), 1.826 (s, 3H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.33 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, (CDCl₃): δ 170.3, 170.2, 140.7, 135.6, 131.3, 129.6, 128.7, 127.8, 124.4, 122.5, 122.1, 120.5, 120.4, 119.7, 113.6, 109.1, 102.2, 94.4, 77.9, 62.9, 13.91, 13.89, 9.9, 9.8. HRMS (ESI) calcd for C₂₅H₂₄N₂NaO₅Br [(M+Na⁺)]: 591.0125, found: 591.0125. HPLC analysis of the product: Daicel Chiralpak AD-H column; hexane/2-propanol = 90/10, 0.5 mL/min. Retention times: 35.72 min (minor), 49.50 min (major).

7. Crystal Structure of (S)-3a

Method for single crystals cultivation: **3a** (50.0 mg) was dissolved in n-hexane/ dichloromethane (v/v =80:20, 2.0 mL) in a vial at room temperature. The vial was properly sealed with parafilm and kept at 25 °C to allow the slow evaporation of the solvents until a single crystal was obtained. The absolute configuration of compound **3a** is determined by anomalous dispersion with Ga K α radiation (λ =1.34139 Å) as X-ray source for X-ray diffraction experiment, and a Flack parameter of -0.01(2) is obtained as result. This crystal was deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC 2405517.

Table S4. Crystal data and structure refinement for	231026lty_wxr_2_83.		
Identification code	231026lty_wxr_2_83		
Empirical formula	C25 H25 Br N2 O5		
Formula weight	513.38		
Temperature	258.00 K		
Wavelength	1.34139 Å		
Crystal system	Monoclinic		
Space group	P 1 21 1		
Unit cell dimensions	a = 12.9596(5) Å	$\alpha = 90$ °.	
	b = 7.6809(3) Å	β=103.416(2) °.	
	c = 24.4062(10) Å	$\gamma = 90$ °.	
Volume	2363.13(16) Å ³		
Z	4		
Density (calculated)	1.443 Mg/m ³		
Absorption coefficient	1.772 mm ⁻¹		
F(000)	1056		
Crystal size	0.07 x 0.07 x 0.05 mm ³		
Theta range for data collection	3.239 to 55.640 °.		
Index ranges	-15<=h<=15, -8<=k<=9, -29<=	=l<=29	
Reflections collected	25114		
Independent reflections	8578 [R(int) = 0.0828]		
Completeness to theta = 53.594 $^{\circ}$	98.6 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7508 and 0.4349		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	8578 / 185 / 593		
Goodness-of-fit on F^2 1.063			
Final R indices [I>2sigma(I)]	R1 = 0.0767, wR2 = 0.2132		
R indices (all data)	R1 = 0.0880, w $R2 = 0.2269$		
Absolute structure parameter	0.082(13)		
Extinction coefficient	n/a		
Largest diff. peak and hole	1.464 and -0.812 e.Å ⁻³		

	Х	у	Z	U(eq)
Br(1)	4784(1)	4063(1)	4987(1)	66(1)
C(1)	2853(5)	2285(9)	5002(2)	37(1)
N(1)	2541(4)	3976(9)	4115(2)	41(1)
O(1)	4379(5)	4016(15)	2900(3)	89(2)
C(2)	3886(6)	2582(10)	5286(3)	48(2)
N(2)	2222(5)	2883(9)	4486(2)	45(1)
O(2)	2907(8)	2741(12)	2064(3)	102(3)
C(3)	4269(7)	1754(12)	5785(3)	56(2)
O(3)	1621(7)	4159(17)	2314(3)	106(3)
C(4)	3643(7)	604(14)	6011(3)	62(2)
O(4)	4159(13)	7618(19)	2849(4)	169(6)
C(5)	2612(7)	271(11)	5737(3)	54(2)
O(5)	3208(10)	6809(12)	2048(4)	121(3)
C(6)	2205(6)	1129(10)	5235(3)	43(2)
C(7)	1185(5)	1060(9)	4833(3)	40(1)
C(8)	254(6)	107(11)	4821(4)	56(2)
C(9)	-578(6)	282(14)	4371(4)	64(2)
C(10)	-526(7)	1376(14)	3921(4)	64(2)
C(11)	393(6)	2308(12)	3924(3)	54(2)
C(12)	1231(5)	2135(10)	4385(3)	42(1)
C(13)	2461(6)	5758(9)	4115(3)	43(2)
C(14)	2754(6)	6340(10)	3643(3)	44(2)
C(15)	3005(5)	4840(10)	3344(3)	42(1)
C(16)	2880(5)	3404(10)	3644(3)	43(2)
C(17)	3039(8)	1537(11)	3564(3)	55(2)
C(18)	2129(10)	6700(13)	4577(4)	73(3)
C(19)	3349(7)	4861(11)	2797(3)	55(2)
C(20)	2626(8)	3792(15)	2352(3)	73(3)
C(21)	829(14)	3220(30)	1922(6)	127(4)
C(22)	354(12)	1950(30)	2207(6)	122(6)
C(23)	3486(11)	6650(15)	2578(4)	81(3)
C(24)	3491(19)	8470(20)	1784(8)	140(5)
C(25)	3260(20)	8240(30)	1225(8)	182(8)
Br(1A)	9682(1)	7578(3)	1379(1)	116(1)

Table S5. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for 231026lty_wxr_2_83. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1A)	8144(9)	7849(11)	356(4)	68(2)
N(1A)	7413(5)	5872(9)	948(2)	53(2)
O(1A)	5995(6)	5536(15)	2303(4)	112(4)
C(2A)	9123(9)	8271(15)	643(6)	84(3)
N(2A)	7344(6)	6939(10)	500(2)	58(2)
O(2A)	7538(13)	7139(14)	3023(5)	142(4)
C(3A)	9746(10)	9389(17)	343(7)	102(3)
O(3A)	8795(11)	5529(17)	2842(5)	132(3)
C(4A)	9316(12)	9889(18)	-195(8)	103(3)
O(4A)	7846(9)	2109(15)	2639(5)	127(4)
C(5A)	8382(12)	9485(15)	-470(7)	96(3)
O(5A)	6298(8)	2531(13)	2746(6)	130(3)
C(6A)	7741(9)	8442(12)	-212(4)	73(2)
C(12A)	6437(5)	6864(9)	52(2)	80(2)
C(7A)	6639(5)	7777(9)	-403(2)	75(2)
C(8A)	5859(7)	7909(10)	-900(2)	94(3)
C(9A)	4877(6)	7128(11)	-941(2)	95(3)
C(10A)	4674(5)	6215(10)	-485(3)	101(3)
C(11A)	5454(6)	6083(9)	11(2)	99(3)
C(13A)	7719(6)	4130(13)	964(3)	53(2)
C(14A)	7640(7)	3539(11)	1487(3)	55(2)
C(15A)	7262(6)	4880(11)	1771(3)	49(2)
C(16A)	7152(7)	6348(11)	1450(3)	52(2)
C(17A)	6791(10)	8135(13)	1528(4)	75(3)
C(18A)	8019(10)	3294(16)	484(5)	80(3)
C(19A)	7001(9)	4833(14)	2342(4)	71(2)
C(20A)	7812(12)	6020(20)	2788(5)	93(3)
C(21A)	9558(19)	6640(30)	3235(8)	153(6)
C(22A)	10015(16)	7960(30)	2953(8)	140(6)
C(23A)	7056(10)	2995(14)	2567(4)	80(3)
C(24A)	6197(15)	740(20)	2938(12)	149(5)
C(25A)	6315(17)	880(20)	3558(11)	164(8)

Br(1)-C(2)	1.890(8)
C(1)-C(2)	1.376(10)
C(1)-N(2)	1.411(9)
C(1)-C(6)	1.427(9)
N(1)-N(2)	1.366(8)
N(1)-C(13)	1.373(10)
N(1)-C(16)	1.395(8)
O(1)-H(1)	0.8200
O(1)-C(19)	1.452(12)
C(2)-C(3)	1.362(11)
N(2)-C(12)	1.376(9)
O(2)-C(20)	1.182(13)
C(3)-H(3)	0.9300
C(3)-C(4)	1.396(13)
O(3)-C(20)	1.315(14)
O(3)-C(21)	1.427(16)
C(4)-H(4)	0.9300
C(4)-C(5)	1.372(13)
O(4)-C(23)	1.219(15)
C(5)-H(5)	0.9300
C(5)-C(6)	1.384(10)
O(5)-C(23)	1.265(13)
O(5)-C(24)	1.512(17)
C(6)-C(7)	1.452(10)
C(7)-C(8)	1.406(10)
C(7)-C(12)	1.382(10)
C(8)-H(8)	0.9300
C(8)-C(9)	1.356(13)
C(9)-H(9)	0.9300
C(9)-C(10)	1.398(14)
C(10)-H(10)	0.9300
C(10)-C(11)	1.388(12)
C(11)-H(11)	0.9300
C(11)-C(12)	1.376(11)
C(13)-C(14)	1.370(9)
C(13)-C(18)	1.484(10)
C(14)-H(14)	0.9300

C(14)-C(15)	1.440(10)
C(15)-C(16)	1.354(11)
C(15)-C(19)	1.502(9)
C(16)-C(17)	1.468(12)
C(17)-H(17A)	0.9600
C(17)-H(17B)	0.9600
C(17)-H(17C)	0.9600
C(18)-H(18A)	0.9600
C(18)-H(18B)	0.9600
C(18)-H(18C)	0.9600
C(19)-C(20)	1.504(12)
C(19)-C(23)	1.500(13)
C(21)-H(21A)	0.9700
C(21)-H(21B)	0.9700
C(21)-C(22)	1.42(2)
C(22)-H(22A)	0.9600
C(22)-H(22B)	0.9600
C(22)-H(22C)	0.9600
C(24)-H(24A)	0.9700
C(24)-H(24B)	0.9700
C(24)-C(25)	1.34(3)
C(25)-H(25A)	0.9600
C(25)-H(25B)	0.9600
C(25)-H(25C)	0.9600
Br(1A)-C(2A)	1.852(14)
C(1A)-C(2A)	1.339(17)
C(1A)-N(2A)	1.362(11)
C(1A)-C(6A)	1.437(15)
N(1A)-N(2A)	1.351(9)
N(1A)-C(13A)	1.393(13)
N(1A)-C(16A)	1.395(8)
O(1A)-H(1A)	0.8200
O(1A)-C(19A)	1.394(12)
C(2A)-C(3A)	1.483(17)
N(2A)-C(12A)	1.409(9)
O(2A)-C(20A)	1.138(17)
C(3A)-H(3A)	0.9300
C(3A)-C(4A)	1.36(2)
O(3A)-C(20A)	1.305(18)

O(3A)-C(21A)	1.481(18)
C(4A)-H(4A)	0.9300
C(4A)-C(5A)	1.28(2)
O(4A)-C(23A)	1.208(14)
C(5A)-H(5A)	0.9300
C(5A)-C(6A)	1.404(13)
O(5A)-C(23A)	1.218(12)
O(5A)-C(24A)	1.470(17)
C(6A)-C(7A)	1.486(14)
C(12A)-C(7A)	1.3900
C(12A)-C(11A)	1.3900
C(7A)-C(8A)	1.3900
C(8A)-H(8A)	0.9300
C(8A)-C(9A)	1.3900
C(9A)-H(9A)	0.9300
C(9A)-C(10A)	1.3900
C(10A)-H(10A)	0.9300
C(10A)-C(11A)	1.3900
C(11A)-H(11A)	0.9300
C(13A)-C(14A)	1.379(11)
C(13A)-C(18A)	1.466(12)
C(14A)-H(14A)	0.9300
C(14A)-C(15A)	1.393(12)
C(15A)-C(16A)	1.361(11)
C(15A)-C(19A)	1.509(10)
C(16A)-C(17A)	1.476(13)
C(17A)-H(17D)	0.9600
C(17A)-H(17E)	0.9600
C(17A)-H(17F)	0.9600
C(18A)-H(18D)	0.9600
C(18A)-H(18E)	0.9600
C(18A)-H(18F)	0.9600
C(19A)-C(20A)	1.61(2)
C(19A)-C(23A)	1.511(14)
C(21A)-H(21C)	0.9700
C(21A)-H(21D)	0.9700
C(21A)-C(22A)	1.43(3)
C(22A)-H(22D)	0.9600
C(22A)-H(22E)	0.9600

C(22A)-H(22F)	0.9600
C(24A)-H(24C)	0.9700
C(24A)-H(24D)	0.9700
C(24A)-C(25A)	1.49(3)
C(25A)-H(25D)	0.9600
C(25A)-H(25E)	0.9600
C(25A)-H(25F)	0.9600
C(2)-C(1)-N(2)	133.6(6)
C(2)-C(1)-C(6)	119.8(6)
N(2)-C(1)-C(6)	106.6(6)
N(2)-N(1)-C(13)	125.3(5)
N(2)-N(1)-C(16)	123.7(7)
C(13)-N(1)-C(16)	110.6(6)
C(19)-O(1)-H(1)	109.5
C(1)-C(2)-Br(1)	121.3(5)
C(3)-C(2)-Br(1)	119.8(6)
C(3)-C(2)-C(1)	118.9(7)
N(1)-N(2)-C(1)	126.1(6)
N(1)-N(2)-C(12)	123.5(6)
C(12)-N(2)-C(1)	110.3(5)
C(2)-C(3)-H(3)	119.2
C(2)-C(3)-C(4)	121.6(8)
C(4)-C(3)-H(3)	119.2
C(20)-O(3)-C(21)	119.0(13)
C(3)-C(4)-H(4)	119.5
C(5)-C(4)-C(3)	121.0(7)
C(5)-C(4)-H(4)	119.5
C(4)-C(5)-H(5)	121.0
C(4)-C(5)-C(6)	118.1(7)
C(6)-C(5)-H(5)	121.0
C(23)-O(5)-C(24)	118.6(11)
C(1)-C(6)-C(7)	106.3(6)
C(5)-C(6)-C(1)	120.6(7)
C(5)-C(6)-C(7)	132.9(7)
C(8)-C(7)-C(6)	132.4(7)
C(12)-C(7)-C(6)	108.2(6)
C(12)-C(7)-C(8)	119.3(7)
C(7)-C(8)-H(8)	120.6

C(9)-C(8)-C(7)	118.8(7)
C(9)-C(8)-H(8)	120.6
C(8)-C(9)-H(9)	119.2
C(8)-C(9)-C(10)	121.5(8)
C(10)-C(9)-H(9)	119.2
C(9)-C(10)-H(10)	119.9
C(11)-C(10)-C(9)	120.2(8)
C(11)-C(10)-H(10)	119.9
C(10)-C(11)-H(11)	121.0
C(12)-C(11)-C(10)	118.0(7)
C(12)-C(11)-H(11)	121.0
N(2)-C(12)-C(7)	108.5(6)
N(2)-C(12)-C(11)	129.2(6)
C(11)-C(12)-C(7)	122.2(7)
N(1)-C(13)-C(18)	121.5(7)
C(14)-C(13)-N(1)	106.8(6)
C(14)-C(13)-C(18)	131.7(7)
C(13)-C(14)-H(14)	126.1
C(13)-C(14)-C(15)	107.7(6)
C(15)-C(14)-H(14)	126.1
C(14)-C(15)-C(19)	126.1(7)
C(16)-C(15)-C(14)	107.9(5)
C(16)-C(15)-C(19)	125.9(7)
N(1)-C(16)-C(17)	119.8(6)
C(15)-C(16)-N(1)	106.8(6)
C(15)-C(16)-C(17)	133.3(6)
C(16)-C(17)-H(17A)	109.5
C(16)-C(17)-H(17B)	109.5
C(16)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
C(13)-C(18)-H(18A)	109.5
C(13)-C(18)-H(18B)	109.5
C(13)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
O(1)-C(19)-C(15)	106.9(6)

O(1)-C(19)-C(20)	105.9(8)
O(1)-C(19)-C(23)	107.0(8)
C(15)-C(19)-C(20)	111.9(6)
C(23)-C(19)-C(15)	114.3(7)
C(23)-C(19)-C(20)	110.3(8)
O(2)-C(20)-O(3)	122.8(10)
O(2)-C(20)-C(19)	125.2(10)
O(3)-C(20)-C(19)	112.0(9)
O(3)-C(21)-H(21A)	109.6
O(3)-C(21)-H(21B)	109.6
H(21A)-C(21)-H(21B)	108.1
C(22)-C(21)-O(3)	110.3(12)
C(22)-C(21)-H(21A)	109.6
C(22)-C(21)-H(21B)	109.6
C(21)-C(22)-H(22A)	109.5
C(21)-C(22)-H(22B)	109.5
C(21)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
O(4)-C(23)-O(5)	119.6(9)
O(4)-C(23)-C(19)	119.6(11)
O(5)-C(23)-C(19)	115.2(9)
O(5)-C(24)-H(24A)	110.1
O(5)-C(24)-H(24B)	110.1
H(24A)-C(24)-H(24B)	108.4
C(25)-C(24)-O(5)	107.9(14)
C(25)-C(24)-H(24A)	110.1
C(25)-C(24)-H(24B)	110.1
C(24)-C(25)-H(25A)	109.5
C(24)-C(25)-H(25B)	109.5
C(24)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5
C(2A)-C(1A)-N(2A)	132.4(10)
C(2A)-C(1A)-C(6A)	121.0(9)
N(2A)-C(1A)-C(6A)	106.5(10)
N(2A)-N(1A)-C(13A)	124.8(6)

N(2A)-N(1A)-C(16A)	124.6(7)
C(13A)-N(1A)-C(16A)	110.6(6)
C(19A)-O(1A)-H(1A)	109.5
C(1A)-C(2A)-Br(1A)	123.2(8)
C(1A)-C(2A)-C(3A)	116.2(12)
C(3A)-C(2A)-Br(1A)	120.7(10)
C(1A)-N(2A)-C(12A)	111.6(7)
N(1A)-N(2A)-C(1A)	127.5(8)
N(1A)-N(2A)-C(12A)	119.3(7)
C(2A)-C(3A)-H(3A)	120.2
C(4A)-C(3A)-C(2A)	119.5(13)
C(4A)-C(3A)-H(3A)	120.2
C(20A)-O(3A)-C(21A)	112.9(15)
C(3A)-C(4A)-H(4A)	117.8
C(5A)-C(4A)-C(3A)	124.4(12)
C(5A)-C(4A)-H(4A)	117.8
C(4A)-C(5A)-H(5A)	120.3
C(4A)-C(5A)-C(6A)	119.4(14)
C(6A)-C(5A)-H(5A)	120.3
C(23A)-O(5A)-C(24A)	121.9(11)
C(1A)-C(6A)-C(7A)	107.6(7)
C(5A)-C(6A)-C(1A)	119.5(12)
C(5A)-C(6A)-C(7A)	132.9(11)
C(7A)-C(12A)-N(2A)	108.8(5)
C(7A)-C(12A)-C(11A)	120.0
C(11A)-C(12A)-N(2A)	131.2(5)
C(12A)-C(7A)-C(6A)	105.5(5)
C(12A)-C(7A)-C(8A)	120.0
C(8A)-C(7A)-C(6A)	134.5(5)
C(7A)-C(8A)-H(8A)	120.0
C(9A)-C(8A)-C(7A)	120.0
C(9A)-C(8A)-H(8A)	120.0
C(8A)-C(9A)-H(9A)	120.0
C(10A)-C(9A)-C(8A)	120.0
C(10A)-C(9A)-H(9A)	120.0
C(9A)-C(10A)-H(10A)	120.0
C(11A)-C(10A)-C(9A)	120.0
C(11A)-C(10A)-H(10A)	120.0
C(12A)-C(11A)-H(11A)	120.0

C(10A)-C(11A)-C(12A)	120.0
C(10A)-C(11A)-H(11A)	120.0
N(1A)-C(13A)-C(18A)	121.6(8)
C(14A)-C(13A)-N(1A)	105.2(6)
C(14A)-C(13A)-C(18A)	133.2(10)
C(13A)-C(14A)-H(14A)	125.5
C(13A)-C(14A)-C(15A)	109.1(8)
C(15A)-C(14A)-H(14A)	125.5
C(14A)-C(15A)-C(19A)	128.5(7)
C(16A)-C(15A)-C(14A)	109.2(6)
C(16A)-C(15A)-C(19A)	122.3(7)
N(1A)-C(16A)-C(17A)	120.3(7)
C(15A)-C(16A)-N(1A)	105.9(7)
C(15A)-C(16A)-C(17A)	133.7(6)
C(16A)-C(17A)-H(17D)	109.5
C(16A)-C(17A)-H(17E)	109.5
C(16A)-C(17A)-H(17F)	109.5
H(17D)-C(17A)-H(17E)	109.5
H(17D)-C(17A)-H(17F)	109.5
H(17E)-C(17A)-H(17F)	109.5
C(13A)-C(18A)-H(18D)	109.5
C(13A)-C(18A)-H(18E)	109.5
C(13A)-C(18A)-H(18F)	109.5
H(18D)-C(18A)-H(18E)	109.5
H(18D)-C(18A)-H(18F)	109.5
H(18E)-C(18A)-H(18F)	109.5
O(1A)-C(19A)-C(15A)	109.5(8)
O(1A)-C(19A)-C(20A)	106.4(10)
O(1A)-C(19A)-C(23A)	110.6(9)
C(15A)-C(19A)-C(20A)	111.1(8)
C(15A)-C(19A)-C(23A)	110.9(7)
C(23A)-C(19A)-C(20A)	108.3(9)
O(2A)-C(20A)-O(3A)	125.3(16)
O(2A)-C(20A)-C(19A)	122.6(15)
O(3A)-C(20A)-C(19A)	112.1(11)
O(3A)-C(21A)-H(21C)	109.1
O(3A)-C(21A)-H(21D)	109.1
H(21C)-C(21A)-H(21D)	107.8
C(22A)-C(21A)-O(3A)	112.7(15)

C(22A)-C(21A)-H(21C)	109.1
C(22A)-C(21A)-H(21D)	109.1
C(21A)-C(22A)-H(22D)	109.5
C(21A)-C(22A)-H(22E)	109.5
C(21A)-C(22A)-H(22F)	109.5
H(22D)-C(22A)-H(22E)	109.5
H(22D)-C(22A)-H(22F)	109.5
H(22E)-C(22A)-H(22F)	109.5
O(4A)-C(23A)-O(5A)	120.6(10)
O(4A)-C(23A)-C(19A)	123.2(10)
O(5A)-C(23A)-C(19A)	115.5(10)
O(5A)-C(24A)-H(24C)	110.8
O(5A)-C(24A)-H(24D)	110.8
O(5A)-C(24A)-C(25A)	104.9(17)
H(24C)-C(24A)-H(24D)	108.8
C(25A)-C(24A)-H(24C)	110.8
C(25A)-C(24A)-H(24D)	110.8
C(24A)-C(25A)-H(25D)	109.5
C(24A)-C(25A)-H(25E)	109.5
C(24A)-C(25A)-H(25F)	109.5
H(25D)-C(25A)-H(25E)	109.5
H(25D)-C(25A)-H(25F)	109.5
H(25E)-C(25A)-H(25F)	109.5

Symmetry transformations used to generate equivalent atoms:

 U^{11} U²² U³³ U²³ U^{13} U^{12} Br(1) 53(1) 57(1) 86(1) 9(1) 14(1) -11(1) C(1) 46(3) 30(3) 39(3) 2(2) 18(3) 5(3) N(1) 53(3) 32(3) 43(2) 4(3) 22(2) 6(3) O(1) 133(7) 79(4) 69(4) -1(5)43(3) -8(5)C(2) 63(4) 40(4) -1(3) 24(3) 10(3) 48(3) N(2) 50(3) 12(3) 16(2) 46(4) 43(3) 0(3) O(2) 165(8) 74(5) 75(4) -34(4)45(5) -15(5)C(3) 55(5) 60(5) 54(4) -4(4) 12(4) 17(4) O(3) 104(5) 132(7) -18(5) 13(4) 78(4) -40(6) C(4) 23(4) 75(5) 70(6) 47(4) 13(4) 14(5) O(4) 254(13) 137(9) 91(5) 42(6) -13(7)-120(10)C(5) 69(5) 53(5) 48(4)10(3) 32(3) 10(4) O(5) 188(8) 59(5) 23(4) -10(5) 96(5) -23(5)C(6) 50(4) 41(4) 45(3) 3(3) 26(3) 10(3) C(7) 42(3) 40(4) 44(3)1(3) 19(3) 5(3) C(8) 61(5) 41(5) 80(5) 6(4) 43(4) 0(3) C(9) 42(4) 72(6) 83(6) -12(5)24(4) -9(4)C(10) 60(5) 66(6) 68(5) -3(5)21(4) 1(4)C(11) 64(4) 49(4) 51(4) 4(3) 21(3) 6(4) C(12) 44(3) 38(4) 48(3) 2(3) 21(3) 1(3)C(13) 54(4) 0(3) 55(4) 26(3) 21(3) 2(3)C(14) 57(4) 33(4) 44(3)0(3) 17(3) -4(3)C(15) 45(4) 0(3) 15(3) 43(3) 41(3) -5(3) C(16) 44(4) -10(3)44(3) 47(3) 22(3) -2(3)C(17) 78(6) 31(4) 36(4) 57(4) -5(3) -3(4)57(6) C(18) 106(8) 44(5) 87(6) -13(5) 6(5) C(19) 78(5) 51(4) 46(3) 1(3) 32(3) -19(4) C(20) 92(5) 83(7) 29(4) 52(4) -5(4)-40(5)C(21) 122(8) 156(11) 92(7) -5(8)5(6) -58(8) C(22) 112(10) 147(14) -25(9) 18(7) 104(8) -65(10)C(23) 139(7) 60(5) 57(4) -4(4) 49(4) -41(5)C(24) 211(12) 65(7) 130(8) 29(7) 8(9) -41(8)C(25) 270(20) 121(13) 132(8) 54(10) 9(14) -76(14)Br(1A) 99(1) -22(1)138(2) 107(1)-42(1)16(1)

Table S7. Anisotropic displacement parameters (Å²x 10³) for 231026lty_wxr_2_83. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(1A)	91(5)	37(4)	97(5)	2(4)	66(5)	-2(4)
N(1A)	71(4)	53(4)	42(3)	1(3)	29(3)	0(3)
O(1A)	93(5)	153(9)	114(6)	63(6)	75(5)	60(6)
C(2A)	91(6)	54(5)	125(7)	-15(5)	62(5)	0(5)
N(2A)	79(5)	57(5)	41(3)	6(3)	23(3)	-10(3)
O(2A)	267(13)	84(6)	107(6)	-10(5)	105(8)	-14(8)
C(3A)	87(6)	62(6)	175(9)	-12(6)	65(6)	10(5)
O(3A)	155(7)	105(7)	110(6)	-30(5)	-23(6)	3(6)
C(4A)	109(7)	65(6)	161(9)	20(6)	87(7)	4(6)
O(4A)	126(8)	109(8)	160(8)	81(7)	62(7)	30(6)
C(5A)	126(7)	60(6)	131(7)	36(5)	88(6)	26(5)
O(5A)	130(6)	64(5)	239(9)	36(6)	127(6)	15(4)
C(6A)	121(6)	40(4)	88(5)	19(4)	83(5)	23(4)
C(12A)	125(6)	58(5)	53(4)	-7(4)	13(5)	21(5)
C(7A)	124(7)	57(5)	54(4)	5(4)	42(4)	22(5)
C(8A)	143(8)	77(6)	59(4)	-1(4)	18(5)	49(6)
C(9A)	130(8)	75(7)	72(5)	-5(5)	9(6)	33(6)
C(10A)	125(7)	70(7)	90(6)	-8(5)	-11(6)	23(6)
C(11A)	125(6)	58(6)	82(5)	-22(4)	-42(6)	25(5)
C(13A)	68(4)	42(4)	56(4)	-6(4)	26(3)	-7(4)
C(14A)	67(5)	45(5)	59(4)	11(3)	24(4)	5(3)
C(15A)	57(4)	45(4)	50(4)	13(3)	25(3)	3(3)
C(16A)	72(5)	45(4)	46(3)	6(3)	29(3)	9(4)
C(17A)	119(8)	54(6)	66(5)	4(4)	48(5)	24(5)
C(18A)	104(8)	65(6)	85(6)	-6(5)	48(6)	3(6)
C(19A)	96(6)	66(5)	63(4)	19(4)	48(4)	23(5)
C(20A)	127(7)	99(7)	63(5)	13(5)	41(5)	17(6)
C(21A)	202(12)	93(9)	120(9)	-28(8)	-49(9)	-23(9)
C(22A)	152(13)	107(12)	138(12)	-38(10)	-16(10)	17(11)
C(23A)	113(7)	63(6)	85(5)	26(5)	67(5)	24(5)
C(24A)	143(9)	68(7)	269(13)	46(9)	116(10)	-4(7)
C(25A)	160(14)	77(10)	270(20)	49(13)	84(15)	-22(10)

	X	У	Z	U(eq)
H(1)	4844	4754	2924	134
H(3)	4964	1961	5981	68
H(4)	3929	56	6352	75
H(5)	2199	-510	5885	64
H(8)	210	-631	5117	67
H(9)	-1197	-341	4361	77
H(10)	-1109	1480	3617	77
H(11)	442	3028	3625	64
H(14)	2786	7496	3535	52
H(17A)	3471	1056	3904	82
H(17B)	3386	1376	3261	82
H(17C)	2365	957	3476	82
H(18A)	1529	6124	4663	110
H(18B)	1940	7875	4461	110
H(18C)	2704	6712	4906	110
H(21A)	290	4015	1724	152
H(21B)	1148	2651	1647	152
H(22A)	-399	1937	2056	183
H(22B)	499	2221	2602	183
H(22C)	640	820	2158	183
H(24A)	3086	9438	1880	168
H(24B)	4240	8722	1921	168
H(25A)	3401	9301	1046	273
H(25B)	2528	7937	1096	273
H(25C)	3696	7325	1132	273
H(1A)	5985	6063	2594	167
H(3A)	10427	9745	522	123
H(4A)	9729	10572	-376	123
H(5A)	8130	9878	-837	116
H(8A)	5995	8520	-1205	113
H(9A)	4355	7216	-1273	114
H(10A)	4017	5692	-513	121
H(11A)	5319	5472	316	119

Table S8. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for 231026lty_wxr_2_83.

H(14A)	7811	2424	1627	67
H(17D)	7018	8904	1269	113
H(17E)	7090	8510	1907	113
H(17F)	6031	8154	1459	113
H(18D)	7453	3419	154	121
H(18E)	8152	2079	563	121
H(18F)	8648	3835	420	121
H(21C)	9196	7194	3496	183
H(21D)	10120	5921	3453	183
H(22D)	10281	7442	2655	211
H(22E)	10586	8516	3216	211
H(22F)	9485	8812	2797	211
H(24C)	6746	0	2852	178
H(24D)	5510	256	2759	178
H(25D)	5630	1036	3638	246
H(25E)	6755	1866	3698	246
H(25F)	6637	-158	3738	246
Br(1)-C(2)-C(3)-C(4)	-177.8(6)			
------------------------	-----------			
C(1)-C(2)-C(3)-C(4)	0.7(11)			
C(1)-N(2)-C(12)-C(7)	0.9(8)			
C(1)-N(2)-C(12)-C(11)	-177.3(7)			
C(1)-C(6)-C(7)-C(8)	177.4(7)			
C(1)-C(6)-C(7)-C(12)	-0.2(7)			
N(1)-N(2)-C(12)-C(7)	177.8(6)			
N(1)-N(2)-C(12)-C(11)	-0.4(12)			
N(1)-C(13)-C(14)-C(15)	0.8(9)			
O(1)-C(19)-C(20)-O(2)	-15.3(12)			
O(1)-C(19)-C(20)-O(3)	164.8(8)			
O(1)-C(19)-C(23)-O(4)	-54.9(15)			
O(1)-C(19)-C(23)-O(5)	98.5(13)			
C(2)-C(1)-N(2)-N(1)	1.3(12)			
C(2)-C(1)-N(2)-C(12)	178.0(7)			
C(2)-C(1)-C(6)-C(5)	-1.4(10)			
C(2)-C(1)-C(6)-C(7)	-178.5(6)			
C(2)-C(3)-C(4)-C(5)	-0.3(13)			
N(2)-C(1)-C(2)-Br(1)	-0.3(11)			
N(2)-C(1)-C(2)-C(3)	-178.8(7)			
N(2)-C(1)-C(6)-C(5)	177.8(6)			
N(2)-C(1)-C(6)-C(7)	0.8(7)			
N(2)-N(1)-C(13)-C(14)	-173.3(6)			
N(2)-N(1)-C(13)-C(18)	7.8(12)			
N(2)-N(1)-C(16)-C(15)	172.7(6)			
N(2)-N(1)-C(16)-C(17)	-7.9(11)			
C(3)-C(4)-C(5)-C(6)	-1.0(12)			
C(4)-C(5)-C(6)-C(1)	1.9(11)			
C(4)-C(5)-C(6)-C(7)	177.9(8)			
C(5)-C(6)-C(7)-C(8)	0.9(13)			
C(5)-C(6)-C(7)-C(12)	-176.7(7)			
C(6)-C(1)-C(2)-Br(1)	178.6(5)			
C(6)-C(1)-C(2)-C(3)	0.1(10)			
C(6)-C(1)-N(2)-N(1)	-177.8(6)			
C(6)-C(1)-N(2)-C(12)	-1.0(7)			
C(6)-C(7)-C(8)-C(9)	-177.9(8)			
C(6)-C(7)-C(12)-N(2)	-0.4(8)			

C(6)-C(7)-C(12)-C(11)	177.9(7)
C(7)-C(8)-C(9)-C(10)	0.3(13)
C(8)-C(7)-C(12)-N(2)	-178.4(6)
C(8)-C(7)-C(12)-C(11)	-0.1(10)
C(8)-C(9)-C(10)-C(11)	0.4(14)
C(9)-C(10)-C(11)-C(12)	-1.0(13)
C(10)-C(11)-C(12)-N(2)	178.7(8)
C(10)-C(11)-C(12)-C(7)	0.8(11)
C(12)-C(7)-C(8)-C(9)	-0.5(11)
C(13)-N(1)-N(2)-C(1)	-91.1(9)
C(13)-N(1)-N(2)-C(12)	92.6(9)
C(13)-N(1)-C(16)-C(15)	-0.5(8)
C(13)-N(1)-C(16)-C(17)	178.8(7)
C(13)-C(14)-C(15)-C(16)	-1.2(9)
C(13)-C(14)-C(15)-C(19)	179.0(7)
C(14)-C(15)-C(16)-N(1)	1.0(8)
C(14)-C(15)-C(16)-C(17)	-178.2(9)
C(14)-C(15)-C(19)-O(1)	121.6(9)
C(14)-C(15)-C(19)-C(20)	-122.9(9)
C(14)-C(15)-C(19)-C(23)	3.4(13)
C(15)-C(19)-C(20)-O(2)	-131.5(10)
C(15)-C(19)-C(20)-O(3)	48.6(12)
C(15)-C(19)-C(23)-O(4)	63.2(17)
C(15)-C(19)-C(23)-O(5)	-143.3(11)
C(16)-N(1)-N(2)-C(1)	96.7(9)
C(16)-N(1)-N(2)-C(12)	-79.6(9)
C(16)-N(1)-C(13)-C(14)	-0.3(9)
C(16)-N(1)-C(13)-C(18)	-179.1(8)
C(16)-C(15)-C(19)-O(1)	-58.2(10)
C(16)-C(15)-C(19)-C(20)	57.3(11)
C(16)-C(15)-C(19)-C(23)	-176.4(9)
C(18)-C(13)-C(14)-C(15)	179.5(9)
C(19)-C(15)-C(16)-N(1)	-179.2(7)
C(19)-C(15)-C(16)-C(17)	1.6(14)
C(20)-O(3)-C(21)-C(22)	103.1(17)
C(20)-C(19)-C(23)-O(4)	-169.7(13)
C(20)-C(19)-C(23)-O(5)	-16.2(15)
C(21)-O(3)-C(20)-O(2)	2.0(18)
C(21)-O(3)-C(20)-C(19)	-178.1(11)

C(23)-O(5)-C(24)-C(25)	171(2)
C(23)-C(19)-C(20)-O(2)	100.1(13)
C(23)-C(19)-C(20)-O(3)	-79.8(10)
C(24)-O(5)-C(23)-O(4)	-16(3)
C(24)-O(5)-C(23)-C(19)	-169.6(14)
Br(1A)-C(2A)-C(3A)-C(4A)	-179.6(9)
C(1A)-C(2A)-C(3A)-C(4A)	-1.2(16)
C(1A)-N(2A)-C(12A)-C(7A)	-0.7(8)
C(1A)-N(2A)-C(12A)-C(11A)	179.8(6)
C(1A)-C(6A)-C(7A)-C(12A)	0.9(7)
C(1A)-C(6A)-C(7A)-C(8A)	-179.9(6)
N(1A)-N(2A)-C(12A)-C(7A)	-167.3(6)
N(1A)-N(2A)-C(12A)-C(11A)	13.3(10)
N(1A)-C(13A)-C(14A)-C(15A)	1.8(9)
O(1A)-C(19A)-C(20A)-O(2A)	2.9(14)
O(1A)-C(19A)-C(20A)-O(3A)	-177.1(10)
O(1A)-C(19A)-C(23A)-O(4A)	-180.0(13)
O(1A)-C(19A)-C(23A)-O(5A)	-9.7(16)
C(2A)-C(1A)-N(2A)-N(1A)	-16.1(16)
C(2A)-C(1A)-N(2A)-C(12A)	178.7(10)
C(2A)-C(1A)-C(6A)-C(5A)	-0.2(13)
C(2A)-C(1A)-C(6A)-C(7A)	-179.1(8)
C(2A)-C(3A)-C(4A)-C(5A)	1(2)
N(2A)-C(1A)-C(2A)-Br(1A)	1.9(16)
N(2A)-C(1A)-C(2A)-C(3A)	-176.4(9)
N(2A)-C(1A)-C(6A)-C(5A)	177.6(8)
N(2A)-C(1A)-C(6A)-C(7A)	-1.3(9)
N(2A)-N(1A)-C(13A)-C(14A)	-177.9(7)
N(2A)-N(1A)-C(13A)-C(18A)	1.1(13)
N(2A)-N(1A)-C(16A)-C(15A)	176.0(8)
N(2A)-N(1A)-C(16A)-C(17A)	-1.3(14)
N(2A)-C(12A)-C(7A)-C(6A)	-0.1(6)
N(2A)-C(12A)-C(7A)-C(8A)	-179.5(6)
N(2A)-C(12A)-C(11A)-C(10A)	179.4(8)
C(3A)-C(4A)-C(5A)-C(6A)	-1(2)
C(4A)-C(5A)-C(6A)-C(1A)	0.1(16)
C(4A)-C(5A)-C(6A)-C(7A)	178.7(10)
C(5A)-C(6A)-C(7A)-C(12A)	-177.8(10)
C(5A)-C(6A)-C(7A)-C(8A)	1.4(14)

C(6A)-C(1A)-C(2A)-Br(1A)	179.1(7)
C(6A)-C(1A)-C(2A)-C(3A)	0.7(14)
C(6A)-C(1A)-N(2A)-N(1A)	166.4(7)
C(6A)-C(1A)-N(2A)-C(12A)	1.3(9)
C(6A)-C(7A)-C(8A)-C(9A)	-179.2(8)
C(12A)-C(7A)-C(8A)-C(9A)	0.0
C(7A)-C(12A)-C(11A)-C(10A)	0.0
C(7A)-C(8A)-C(9A)-C(10A)	0.0
C(8A)-C(9A)-C(10A)-C(11A)	0.0
C(9A)-C(10A)-C(11A)-C(12A)	0.0
C(11A)-C(12A)-C(7A)-C(6A)	179.4(6)
C(11A)-C(12A)-C(7A)-C(8A)	0.0
C(13A)-N(1A)-N(2A)-C(1A)	-83.4(11)
C(13A)-N(1A)-N(2A)-C(12A)	80.8(10)
C(13A)-N(1A)-C(16A)-C(15A)	-2.0(10)
C(13A)-N(1A)-C(16A)-C(17A)	-179.3(9)
C(13A)-C(14A)-C(15A)-C(16A)	-3.2(10)
C(13A)-C(14A)-C(15A)-C(19A)	177.1(9)
C(14A)-C(15A)-C(16A)-N(1A)	3.1(10)
C(14A)-C(15A)-C(16A)-C(17A)	179.9(11)
C(14A)-C(15A)-C(19A)-O(1A)	-130.1(10)
C(14A)-C(15A)-C(19A)-C(20A)	112.6(11)
C(14A)-C(15A)-C(19A)-C(23A)	-7.9(15)
C(15A)-C(19A)-C(20A)-O(2A)	122.1(11)
C(15A)-C(19A)-C(20A)-O(3A)	-58.0(13)
C(15A)-C(19A)-C(23A)-O(4A)	58.4(17)
C(15A)-C(19A)-C(23A)-O(5A)	-131.4(12)
C(16A)-N(1A)-N(2A)-C(1A)	98.9(11)
C(16A)-N(1A)-N(2A)-C(12A)	-96.9(9)
C(16A)-N(1A)-C(13A)-C(14A)	0.1(9)
C(16A)-N(1A)-C(13A)-C(18A)	179.0(9)
C(16A)-C(15A)-C(19A)-O(1A)	50.1(14)
C(16A)-C(15A)-C(19A)-C(20A)	-67.1(12)
C(16A)-C(15A)-C(19A)-C(23A)	172.4(9)
C(18A)-C(13A)-C(14A)-C(15A)	-176.9(10)
C(19A)-C(15A)-C(16A)-N(1A)	-177.1(8)
C(19A)-C(15A)-C(16A)-C(17A)	-0.3(17)
C(20A)-O(3A)-C(21A)-C(22A)	-97(2)
C(20A)-C(19A)-C(23A)-O(4A)	-63.8(14)

C(20A)-C(19A)-C(23A)-O(5A)	106.5(14)
C(21A)-O(3A)-C(20A)-O(2A)	-2(2)
C(21A)-O(3A)-C(20A)-C(19A)	177.9(13)
C(23A)-O(5A)-C(24A)-C(25A)	111.8(18)
C(23A)-C(19A)-C(20A)-O(2A)	-115.9(12)
C(23A)-C(19A)-C(20A)-O(3A)	64.0(12)
C(24A)-O(5A)-C(23A)-O(4A)	-14(3)
C(24A)-O(5A)-C(23A)-C(19A)	175.2(17)

Symmetry transformations used to generate equivalent atoms:

Table S10. Hydrogen bonds for 231026ity_wxr_2_83 [A and].							
 D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)			

Table S10. Hydrogen bonds for 231026lty_wxr_2_83 [Å and].

8. ¹H and ¹³C NMR Spectra for New Compounds

¹H and ¹³C NMR (CDCl₃) Spectra for Compound **1a**

¹H and ¹³C NMR (CDCl₃) Spectra for Compound **1b**

1 H and 13 C NMR (CDCl₃) Spectra for Compound **1**c

¹H and ¹³C NMR (CDCl₃) Spectra for Compound (S)-3h

¹H and ¹³C NMR (CDCl₃) Spectra for Compound (S)-3j

¹H and ¹³C NMR (CDCl₃) Spectra for Compound (S)-3p

¹H and ¹³C NMR (CDCl₃) Spectra for Compound (S)-3r

¹H, ¹³C and ¹⁹F NMR (CDCl₃) Spectra for Compound (S)-4a

0 -50 -100 -150 -200 PPM

¹H, ¹³C and ¹⁹F NMR (CDCl₃) Spectra for Compound (S)-4b

¹H, ¹³C and ¹⁹F NMR (CDCl₃) Spectra for Compound (S)-4c

¹H, ¹³C and ¹⁹F NMR (CDCl₃) Spectra for Compound (S)-4g

¹H, ¹³C and ¹⁹F NMR (CDCl₃) Spectra for Compound (S)-4h

