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1. The excitation and emission spectra
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Figure S1. Fluorescence excitation (solid line) and emission spectra (dashed line).

2. The fluorescence lifetime decay spectra
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Figure S2. Fluorescence lifetime decay spectra of 4a-4d.
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3. The Experimental and the Calculated UV-Vis spectra
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Figure S3. Computed, at the TD-DFT, B3LYP-D3/6-31g(d),'* level of theory and

experimental UV-vis spectra of 4a.
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Figure S4. Computed, at the TD-DFT, B3LYP-D3/6-31g(d), level of theory and
experimental

UV-vis
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Figure S5. Computed, at the TD-DFT, B3LYP-D3/6-31g(d), level of theory and

experimental UV-vis spectra of 4c.
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Figure S6. Computed, at the TD-DFT, B3LYP-D3/6-31g(d), level of theory and

experimental UV-vis spectra of 4d.
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Figure S7. Computed, at the TD-DFT, B3LYP-D3/6-31g(d), level of theory and

experimental UV-vis spectra of 4a-F.
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Figure S8 Computed, at the TD-DFT, B3LYP-D3/6-31g(d), level of theory and
experimental UV-vis spectra of 4b-F.
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Figure S9 Computed, at the TD-DFT, B3LYP-D3/6-31g(d), level of theory and

experimental UV-vis spectra of 4¢-F.
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Figure S10. UV-Vis absorption spectral and solution colors of 4a-4¢ changes after the
addition of TBAF.
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Table S1. Calculated (Arp.prr) wavelengths of 4a. Molecular orbitals (MOs) involved in

the main electronic transition, f corresponds to the oscillator strength. (TD-DFT,
B3LYP-D3/6-31g(d))

Oscillator

Arp-pFT Strength, £ MOs
HOMO-1 ->LOMO 16.01%
385.17 0.3909 HOMO ->LOMO+1 68.02%
HOMO-1 ->LOMO 66.14%
344.84 0.2411 HOMO ->LOMO+1 15.69%
HOMO ->LOMO+2 12.26%
HOMO-3 ->LOMO 18.10%
HOMO-2 ->LOMO 58.86%
321.23 0.1147 HOMO ->LOMO+2 29.39%
HOMO ->LOMO+3 12.45%
HOMO-5 ->LOMO 28.20%
HOMO-4 ->LOMO 49.77%
HOMO-3 ->LOMO 24.74%
298.15 0.1512 HOMO-2 ->LOMO 11.54%
HOMO ->LOMO+3 20.36%
HOMO ->LOMO+4 12.82%
HOMO-6 ->LOMO 24.28%
283.25 0.1110 HOMO-1 ->LOMO+1 22.78%
HOMO ->LOMO+5 57.60%
HOMO-1 ->LOMO+1 54.17%
HOMO ->LOMO+4 27.26%
283.11 0.6319 HOMO ->LOMO+5 21.24%
HOMO ->LOMO+6 11.33%
HOMO ->LOMO+8 19.26%
HOMO-9 ->LOMO 16.95%
HOMO-8 ->LOMO 14.27%
HOMO-7 ->LOMO 13.71%
260.53 0.1099 HOMO-2 ->LOMO+1 57.35%
HOMO-1 ->LOMO+2 14.04%
HOMO ->LOMO+9 14.03%
HOMO ->LOMO+10 14.89%
HOMO-2 ->LOMO+2 62.15%
242.26 0.2677 HOMO-2 ->LOMO+3 15.10%
HOMO-1 ->LOMO+3 14.80%
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Table S2. Calculated (Arp.prr) Wavelengths of 4b. Molecular orbitals (MOs) involved in
the main electronic transition, f corresponds to the oscillator strength. (TD-DFT,
B3LYP-D3/6-31g(d))

Oscillator

M-t Strength, MOs
HOMO-1 ->LOMO 15.57%
386.03 0.3942 HOMO ->LOMO+1 68.15%
HOMO-1 ->LOMO 66.19%
344.38 0.2416 HOMO ->LOMO+1 15.24%
HOMO ->LOMO+2 12.51%
HOMO-3 ->LOMO 18.87%
HOMO-2 ->LOMO 60.33%
HOMO ->LOMO+2 25.92%
32041 0-1151 HOMO ->LOMO+3 11.24%
HOMO-3 ->LOMO 44.56%
HOMO ->LOMO+3 25.59%
HOMO-5 ->LOMO 30.63%
HOMO-4 ->LOMO 48.57%
HOMO-3 ->LOMO 23.83%
298.17 0.1754 HOMO-2 ->LOMO 12.80%
HOMO ->LOMO+3 20.73%
HOMO ->LOMO+4 11.79%
HOMO-5 ->LOMO 10.31%
HOMO-1 ->LOMO+1 57.57%
HOMO ->LOMO+4 28.11%
283.17 0.7125 HOMO ->LOMO+5 13.37%
HOMO ->LOMO+8 14.39%
HOMO-9 ->LOMO 12.04%
HOMO-8 ->LOMO 44.67%
25981 0.1359 HOMO-2 ->LOMO+1 39.74%
HOMO ->LOMO+10 25.44%
HOMO-2 ->LOMO+2 62.52%
241.78 0.2799 HOMO-2 ->LOMO+3 14.88%
HOMO-1 ->LOMO+3 13.67%
HOMO-7 ->LOMO+1 25.26%
HOMO-2 ->LOMO+2 22.75%
236.84 0.1303 HOMO-2 ->LOMO+3 10.38%
HOMO-1 ->LOMO+3 29.21%
HOMO-1 ->LOMO+4 42.68%
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Table S3. Calculated (Arp.prr) wavelengths of 4¢. Molecular orbitals (MOs) involved in
the main electronic transition, f corresponds to the oscillator strength. (TD-DFT,
B3LYP-D3/6-31g(d))

Oscillator
M
An-prT Strength, Os

HOMO-1 ->LOMO 16.84%

382.20 0.3024
HOMO ->LOMO+1 67.74%
HOMO-1 ->LOMO 63.96%
341.09 0.1839 HOMO ->LOMO+1 15.98%
HOMO ->LOMO+2 19.00%
HOMO-5 ->LOMO 37.59%
HOMO-4 ->LOMO 39.35%
HOMO-3 ->LOMO 21.79%
297.44 0.1875 HOMO-2 ->LOMO 15.64%
HOMO ->LOMO+2 11.13%
HOMO ->LOMO+3 25.75%
HOMO ->LOMO+4 15.05%
HOMO-1 ->LOMO+1 61.72%
HOMO ->LOMO+4 22.59%

282.19 0.5398
HOMO ->LOMO+5 10.40%
HOMO ->LOMO+8 12.57%
HOMO-10 ->LOMO 13.60%
HOMO-7 ->LOMO 14.80%
261.00 0.1854 HOMO-1 ->LOMO+1 14.03%
HOMO ->LOMO+8 30.88%
HOMO ->LOMO+10 54.28%
HOMO-3 ->LOMO+1 18.90%
HOMO-2 ->LOMO+1 59.85%

257.97 0.1841
HOMO ->LOMO+9 17.74%
HOMO ->LOMO+10 10.14%
HOMO-10 ->LOMO 16.90%
HOMO-9 ->LOMO 15.24%
HOMO-8 ->LOMO 12.56%

237.50 0.1800
HOMO-2 ->LOMO+2 21.75%
HOMO-1 ->LOMO+3 47.99%
HOMO-1 ->LOMO+4 31.56%
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Table S4. Calculated (Arp.prr) Wavelengths of 4d. Molecular orbitals (MOs) involved in

the main electronic transition, f corresponds to the oscillator strength. (TD-DFT,
B3LYP-D3/6-31g(d))

Oscillator
M
Mm-prT Strength, £ Os
408.71 0.3965 HOMO ->LUMO 69.60%
HOMO-1 ->LOMO 54.85%
HOMO ->LOMO+5 26.61%
289.37 0.8039
HOMO ->LOMO+6 13.63%
HOMO ->LOMO+7 27.15%
HOMO-1 ->LOMO 14.79%
HOMO ->LOMO+8 56.44%
267.99 0.3061
HOMO ->LOMO+9 28.35%
HOMO ->LOMO+10 20.46%
HOMO-2 ->LOMO 59.92%
HOMO ->LOMO+2 11.34%
259.43 0.2795
HOMO ->LOMO+9 17.51%
HOMO ->LOMO+10 23.84%
HOMO-4 ->LOMO 10.80%
HOMO-2 ->LOMO+2 52.20%
233.35 0.2677 HOMO-1 ->LOMO+4 11.62%
HOMO-1 ->LOMO+5 34.31%
HOMO-1 ->LOMO+7 12.55%
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Table S5. Calculated (Arp.prr) Wavelengths of 4a-F. Molecular orbitals (MOs) involved
in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT,
B3LYP-D3/6-31g(d))

Oscillator

Atp-pFT Strength, MOs
440.79 0.6091 HOMO ->LUMO 70.02%
HOMO-2 ->LOMO 10.39%
HOMO-1 ->LOMO 65.44%
315.66 0.1664 HOMO ->LOMO+2 14.87%
HOMO ->LOMO+4 11.13%
HOMO-2 ->LOMO 64.08%
304.38 0.2606 HOMO-1 ->LOMO 14.13%
HOMO ->LOMO+6 15.59%
HOMO-3 ->LOMO 52.12%
293.79 0.1899 HOMO ->LOMO+4 42.44%
HOMO ->LOMO+5 12.16%
HOMO-4 ->LOMO 37.53%
HOMO-1 ->LOMO+1 17.685
281.50 0.2590 HOMO ->LOMO+5 37.70%
HOMO ->LOMO+6 35.15%
HOMO ->LOMO+7 14.73%
HOMO-7 ->LOMO 22.19%
HOMO-6 ->LOMO 10.31%
271.30 0.1448 HOMO-5 ->LOMO 63.29%
HOMO-2 ->LOMO+1 10.16%
HOMO-5 ->LOMO+1 65.825
246.88 0.3004 HOMO-2 ->LOMO+3 11.08%
HOMO ->LOMO+13 10.71%
HOMO-8 ->LOMO 25.76%
HOMO-7 ->LOMO+1 29.13%
HOMO-5 ->LOMO+2 25.51%
HOMO-4 ->LOMO+2 14.88%
235.97 0.1392 HOMO-2 ->LOMO+5 13.38%
HOMO-2 ->LOMO+6 16.82%
HOMO-1 ->LOMO+4 18.45%
HOMO-1 ->LOMO+5 20.11%
HOMO-1 ->LOMO+6 17.34%
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Table S6 Calculated (Arp.prr) Wavelengths of 4b-F. Molecular orbitals (MOs) involved
in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT,
B3LYP-D3/6-31g(d))

Oscillator

An-prT Strength, MOs
442 .87 0.6167 HOMO ->LUMO 70.04%
HOMO-1 ->LOMO 65.97%
317.36 0.1554 HOMO ->LOMO+2 14.45%
HOMO ->LOMO+4 10.26%
HOMO-2 ->LOMO 63.28%
305.59 0.2805 HOMO-1 ->LOMO 12.20%
HOMO ->LOMO+6 19.07%
HOMO-3 ->LOMO 22.89%
HOMO ->LOMO+4 60.14%
293.98 0.1902 HOMO ->LOMO+5 14.95%
HOMO ->LOMO+6 15.83%
HOMO-4 ->LOMO 24.61%
HOMO-3 ->LOMO 10.81%
HOMO-2 ->LOMO+1 11.26%
281.68 0.2419 HOMO-1 ->LOMO+1 34.49%
HOMO ->LOMO+5 33.56%
HOMO ->LOMO+6 34.39%
HOMO ->LOMO+7 33.56%
HOMO-7 ->LOMO 19.84%
272.31 0.1335 HOMO-5 ->LOMO 64.98%
HOMO ->LOMO+7 10.15%
HOMO-7 ->LOMO 51.40%
HOMO-5 ->LOMO 14.82%
HOMO-3 ->LOMO+3 13.98%
255.67 0.1129 HOMO-2 ->LOMO+3 26.92%
HOMO-1 ->LOMO+2 15.42%
HOMO-1 ->LOMO+3 17.42%
HOMO ->LOMO+12 10.82%
HOMO-6 ->LOMO+1 24.31%
247.09 0.2718 HOMO-5 ->LOMO+1 61.56%
HOMO-2 ->LOMO+2 12.45%
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Table S7 Calculated (Arp.prr) Wavelengths of 4¢-F. Molecular orbitals (MOs) involved
in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT,
B3LYP-D3/6-31g(d))

Oscillator
Atp-pFT Strength, MOs
433.61 0.4922 HOMO ->LUMO 69.87%
HOMO-3 ->LOMO 16.98%
HOMO-2 ->LOMO 60.18%
HOMO-1 ->LOMO 16.36%
302.73 0.1267
HOMO ->LOMO+4 12.20%
HOMO ->LOMO+6 18.04%
HOMO ->LOMO+7 12.02%
HOMO-3 ->LOMO 41.50%
292.50 0.2664 HOMO ->LOMO+4 48.10%
HOMO ->LOMO+5 23.29%
HOMO-4 ->LOMO 33.37%
HOMO-3 ->LOMO 16.40%
HOMO-1 ->LOMO+1 14.82%
28103 02269 HOMO ->LOMO+5 33.01%
HOMO ->LOMO+6 42.65%
HOMO ->LOMO+7 12.06%
HOMO-6 ->LOMO+1 48.34%
244.90 0.1693 HOMO-5 ->LOMO+1 33.21%
HOMO-4 ->LOMO+2 32.50%
HOMO-8 ->LOMO 47.62%
HOMO-7 ->LOMO+1 24.91%
HOMO-6 ->LOMO+3 22.33%
236.04 0.0853 HOMO-5 ->LOMO+2 10.45%
HOMO-5 ->LOMO+3 10.94%
HOMO-1 >LOMO+4 12.55%
HOMO ->LOMO+11 17.08%
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4. Electrochemical properties

Cyclic voltammograms were recorded with a Metrohm PGSTAT204 electrochemical
analyzer using DCM. The CV cell consisted of a gold electrode, a Pt wire counter
electrode, and an Ag/AgCl reference electrode. All measurements were performed using
DCM solutions of samples with a concentration of 1 mM and 0.1 M BuyN*BF¢ as a

supporting electrolyte with a scan rate of 100 mVs™!. Potentials are determined against a

ferrocene/ferrocenyl ion couple (Fc/Fc).
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Figure S11. Cyclic voltammograms of 4a, 4b,4c and 4d in DCM with Buy;N*BF4 (0.1 M)
as a supporting electrolyte, Fc = ferrocene.
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5. Comparison of HOMO/LUMO plots

Table S8. ectronic properties of 4a, 4b, 4¢ and 4d

HOMO(eV) LUMO(eV) HOMO(eV) LUMO(eV) E, (eV)
Entry E(eV) Eox’(V)

(Exp)* (Exp)¢ (Cal)y (Caly (Caly*
4a 424 1.00 -5.80 -1.56 -5.39 -0.93 4.46
4b 425 1.01 -5.81 -1.56 -5.40 -0.95 4.45
4c 428 1.05 -5.85 -1.57 -5.56 -1.08 4.48
4d 422 0.79 -5.59 -137 -5.04 -0.92 4.11

“ E, estimated from the UV-Vis absorption spectra.

b Oxidation onset potentials measured by cyclic voltammetry.

ccHOMO = -(Eox +4.8) eV.

¢ LUMO = HOMO + E,.

¢Theoretical calculations have been carried out by using the GAUSSIANO9 suite of programs in
gas-phase at the B3LYP/6-31G(d) levele,’ respectively.
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Figure S13. Computed molecular orbital plots for 4b.
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6. Determination of the detection limit
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Figure S16 (a-c) The calibration curves and linear equation of 4a-4¢ for FL intensity
ratio changes upon gradual addition of F-. (d)The calculated detection limits of 4a, 4b,
and 4c.

Blank  THF 1x10M 1x10°M 1x10*M 1x10-M 1x10°M 0.1M

Blank  THF 1x106M 1x10°M 1x10“M 1x10-3M 1x10-

Figure S17. The 4a-based film for F- detection under daylight (up) and 365 nm UV

irradiation (down).
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Figure S18. Spectral changes in the fluorescence of film based on 4a after addition of
TBAF.
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Figure 19. Photographs of 4a-based test strips for F- detection in aqueous solution under
daylight (up) and 365 nm UV irradiation (down).
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7. Complexation of 4b and 4c with different anions.

Figure S20. (I/Ip)-1 of F-and other anions for the emission of 4b in THF (10 uM) at
different equivalents of anions.

-1

Figure S21. (I/I)-1 of F-and other anions for the emission of 4c in THF (10 uM) at
different equivalents of anions.
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Figure S22. Interference experiments of 4a (10 uM) in THF at 470 nm for F- in the
presence of other anions. The black bars represent the addition of the corresponding

others ion, the red bars represent the change of the emission that occurs upon the
subsequent addition of F- to the above solution.
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Figure S23. Interference experiments of 4b (10 uM) in THF at 480 nm for F- in the

presence of other anions. The black bars represent the addition of the corresponding

others ion, the red bars represent the change of the emission that occurs upon the
subsequent addition of F- to the above solution.
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Figure S24. Interference experiments of 4c¢ (10 uM) in THF at 490 nm for F- in the

presence of other anions. The black bars represent the addition of the corresponding
others ion, the red bars represent the change of the emission that occurs upon the
subsequent addition of F- to the above solution.
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8.'H NMR and '*C NMR spectra
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9. HRMS spectra

Z7_241220115942 #1314-1528 RT: 8.81-10.00 AV: 215 NL: 4.04E7
T: FTMS + p APCl corona Full ms [400.0000-1100.0000]
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Z5#319 RT: 212 AV: 1 NL: 2.52E7
T: FTMS + p APCl corona Full ms [400.0000-1100.0000]
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