Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supplementary Information

Hydrogenation of Glucose to Sorbitol Catalyzed by Cobalt Supported on

Coconut-shell Active Carbon

Yanqiu Liu^a, Mengtian Wang^a, Jingbo Mao^{a, b,*}, Hui Lv^a, and Jinxia Zhou^{a, b,*}

^a College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China

^b Dalian Key Laboratory of Green Manufacturing Technology for Fine Chemicals, Dalian, 116622, China

*Corresponding authors at: College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China. *E-mail addresses:* james_mao@yeah.net (Jingbo Mao); zhoujxmail@163.com (Jinxia Zhou). Tel.: +86 411-87403214, fax: +86 411-87402449.

Tables

Table S1 Hydrogenation of glucose to sorbitol over noble metal catalysts

Entry	Catalyst	Activation conditions	Catalyst loading ^a (wt%)	Glucose aqueous solution (wt%)	H ₂ pressure (MPa)	Т (°С)	<i>t</i> (h)	X _{Glu} (mol%)	S _{Sor} (mol%)	Ref. ^b
1	Ru/y-Al2O3@ASMA	H ₂ -120°C	20	20	5	120	2	100	95.21	12
2	Ru/ASMA@AC	H ₂ -120°C	7.5	20	4	130	3	99.68	93.04	13
3	Ru/Nb ₂ O ₅	H ₂ -250°C	10	10	6	100	4	88	95	14
4	Ru/GLC-600	H ₂ -450°C	8	5	3	140	2	100	96.8	15
5	Ru-ZrO ₂ -SBA-15	H ₂ -300°C	0.5	20	4	150	6	95	90	16
6	Ru/ZSM-5-TF	H ₂ -350°C	4	25	4	120	2	99.6	99.2	17
7	Ru/Al ₂ O ₃	H ₂ -200°C	5	10	3	120	1.5	100	88	18
8	Ru/MCM-41	$\rm CH_2O$	10	10	3	120	2	85	82.5	19
9	Pt/AC	H ₂ -350°C	43.5	2.8	1.6	180	3	98	94	20
10	Pt/SBA-15	H ₂ -400°C	20	2.5	4	140	4	-	28.5	21

^a The catalyst accounted for a mass percentage of glucose. ^b The reference number is consistent with that in the main text.

Table	S2	Hydro	genation	of glu	icose t	o sorbi	tol ove	r noble	metal-d	loped	transition	metal	cataly	ysts
														/

Entry	Catalyst	Activation conditions	Catalyst loading ^a (wt%)	Glucose aqueous solution (wt%)	H ₂ pressure (MPa)	Т (°С)	<i>t</i> (h)	X _{Glu} (mol%)	S _{Sor} (mol%)	Ref. ^b
1	Ni-Ru@PCS	H ₂ -600°C	100	1	3	140	2.5	99	100	22
2	Ru:Ni/MCM-48	H_2 -250°C	NR °	0.73	3	120	1.5	70	~100	23
3	Fe-Ru/GNPs	H2-600°C	3	0.83	3	160	2	49	46	24

^a The catalyst accounted for a mass percentage of glucose.^b The reference number is consistent with that in the main text. ^cNR:Not reported.

Entry	Catalyst	Activation conditions	Catalyst loading ^a (wt%)	Glucose aqueous solution (wt%)	H ₂ pressure (MPa)	Т (°С)	<i>t</i> (h)	X _{Glu} (mol%)	S _{Sor} (mol%)	Ref. ^b
1	nano-Ni ₂ P/HT	H ₂ -600°C	222	2.9	2	100	2	99	>99	25
2	NiP _{0.5} /HA	H ₂ -600°C	100	1	3	120	5	97.6	97.3	26
3	Ni-HAP-4	H ₂ -600°C	10	5	5	150	1	98	99	27
4	SiO2@Ni/NiO	H ₂ -400°C	50	9	HCl+Mg ^c	120	3	99	90	28
5	Ni/AC-I-B	NaBH4	10	25	3	100	2	19.47	71.71	29
6	NiCB-550	H ₂ -500°C	0.06	0.5	3	120	2	33.1	60.8	30
7	Ni/NiO	NaBH ₄	4.2	4.6	5	130	-	95	88	31
8	NiCo/HZSM-5	H ₂ -500°C	55.6	1.5	3	120	2	~43	~95	32
9	Ni1.85Cu1Al1.15	H ₂ -500°C	20	5	3	120	3	78	73	33
10	FeNi/CB	H ₂ -750°C	12	0.5	3	140	2	43.9	58	34

Table S3 Hydrogenation of glucose to sorbitol over transition metal catalysts

^a The catalyst accounted for a mass percentage of glucose.^b The reference number is consistent with that in the main text. ^c Hydrogen is provided by the reaction of HCl and Mg.

Table S4 The results on rea	action ki	inetics of the	Co _{2.0} /AC and	Co _{4.0} /AC	catalysts
-----------------------------	-----------	----------------	---------------------------	-----------------------	-----------

	Reaction R	ate Constant	k_0	E_{a}	
Catalyst —	Tempera	ature (°C)	(Pre exponential)	Activation Energy	
	80	100	(11111)	(KJ/IIIOI)	
Co _{2.0} /AC	2.4×10 ⁻³	5.0×10 ⁻³	8.80×10^4	52	
Co _{4.0} /AC	4.2×10 ⁻³	8.7×10 ⁻³	4.08×10^{8}	76	

Figures

Fig. S1 Powder X-ray diffraction patterns of AC and rGO.

Fig. S2 H2-TPR analysis of a physical mixture of CoO and AC powder.

Fig. S3 Powder X-ray diffraction patterns of Co catalysts with different supports.

Fig. S4 Characterization results of the spent Co_{4.0}/AC catalyst: (a) TEM; (b) XRD: (c) TG, (d) XPS of Co 2p spectra