Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting information for

High-performance donor-acceptor stenhouse adduct sensors

with multi-stimuli response for efficient metal ion detection

Weixia Zhu, Youming Kou, Peixin Liu, Zhenya Wang, Haoran Wu*

School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China

*Corresponding author: Haoran Wu

*Email: haoranwu@zzu.edu.cn

Table of Contents:

Section 1. Relevant literature on a chemical sensor for detecting Cu ²⁺ , Fe ³⁺ ,
and Al ³⁺ ions1
Section 2. Compounds Characterization5
Section 3. The effect of solvents on L-D1 and L-D213
Section 4. Exploration of photoswitching and thermal recovery15
Section 5. Kinetic discussion of the dark recovery process of L-D1 and L-D2 in
toluene solvent ¹⁸⁻²⁰ 19
Section 6. Changes induced by acid-base stimulation20
Section 7. Investigation of metal ion responsiveness
Section 8. References

Section 1. Relevant literature on a chemical sensor for detecting Cu²⁺, Fe³⁺, and Al³⁺ ions.

Table S1. The E_T^N standard is based on the electronic transition of polar probe dyes in a series of solvents, which were chosen ten solvents and their corresponding E_T^N . The solvents are standardized into polar water ($E_T^N=1.0$) and non-polar tetramethylsilane (TMS) ($E_T^N=0$).^{16, 17}

Solvent	DMSO	DMF	MeOH	AeCN	Ethanol
E_T^N	0.444	0.386	0.762	0.460	0.654
Solvent	Acetone	THF	Chloroform	DCM	Toluene
E_T^N	0.355	0.207	0.259	0.309	0.099

Table S2. The λ_{max} of L-D1 in different solvents.

Solvent	DMSO	DMF	MeOH	AeCN	Ethanol
λ_{max}	527 nm	526 nm	519 nm	526 nm	524 nm
Solvent	Acetone	THF	Chloroform	DCM	Toluene
λ_{max}	531 nm	539 nm	542 nm	540 nm	545 nm

Table S3. The λ max of L-D2 in different solvents.

Solvent	DMSO	DMF	МеОН	AeCN	Ethanol
λ_{max}	527 nm	527 nm	519 nm	525 nm	523 nm
Solvent	Acetone	THF	Chloroform	DCM	Toluene
λ_{max}	530 nm	539 nm	541 nm	539 nm	545 nm

Sensor	Target	Detection Method	Solvent system	LOD(M)	Ref
	Cu ²⁺ /Fe ³⁺	Fluorimetric	H ₂ O/Ethanol	Cu ²⁺ : 4.8×10 ⁻⁸ Fe ³⁺ : 3.9×10 ⁻⁹	¹ (2011)
NH NH HO	Cu ²⁺ /Fe ³⁺	Colorimetric	DMF-buffer solution	Cu ²⁺ : 2.9×10 ⁻⁶ Fe ³⁺ : 1.35×10 ⁻⁷	² (2016)
	Cu ²⁺ /Fe ³⁺	Fluorimetric Colorimetric	THF/ H ₂ O	Cu ²⁺ : 4.48×10 ⁻⁷ Fe ³⁺ : 1.09×10 ⁻⁷	³ (2019)
	Cu^{2+}/Fe^{3+}	Fluorimetric	Tris-HCl buffer	Cu ²⁺ : 1.35×10 ⁻⁷ Fe ³⁺ : 1.24×10 ⁻⁷	⁴ (2017)
HN + C + C + C + C + C + C + C + C + C +	Cu ²⁺ /Fe ³⁺	Fluorimetric	H ₂ O	Cu ²⁺ : 1.8×10 ⁻⁸ Fe ³⁺ : 3.3×10 ⁻⁸	⁵ (2018)
HO HO HO HO HO HO	Cu ²⁺ /Fe ³⁺	Fluorimetric	HEPES buffer /DMSO	Cu ²⁺ : 1.04×10 ⁻⁴ Fe ³⁺ : 4.87×10 ⁻⁵	⁶ (2014)
HO CONTRACTOR	Cu^{2+}/Fe^{3+}	Fluorimetric	HEPES buffer /DMSO	Cu ²⁺ : 1.27×10 ⁻⁴ Fe ³⁺ : 5.17×10 ⁻⁵	⁶ (2014)

Table S4	. Relevant	research	on a	dual	chemical	sensor	for	detecting	Cu ²⁺	and Fe ³⁺
ions.										

John of the second

	Cu ²⁺ /Fe ³⁺	Colorimetric	МеОН	Cu ²⁺ : 6.6×10 ⁻⁸ Fe ³⁺ : 1.1×10 ⁻⁷	This Work
toto of	Cu^{2+}/Fe^{3+}	Colorimetric	МеОН	Cu ²⁺ : 1.0×10 ⁻⁷ Fe ³⁺ : 4.2×10 ⁻⁷	This Work

Table S5. Relevant research on a chemical sensor for detecting Al^{3+} ions.

Sensor	Target	Detection Method	Solvent system	LOD(M)	Ref
	Al ³⁺	Fluorimetric	AeCN/H ₂ O	1.37×10 ⁻⁸	⁷ (2023)
N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	Al ³⁺	Fluorimetric	DMSO/HEPES buffer/H ₂ O	1.64×10^{-7}	⁸ (2023)
() () () () () () () () () (Al ³⁺	Fluorimetric	AeCN/PBS buffer	1.14×10^{-6}	⁹ (2021)
H ₃ C O OH	Al ³⁺	Fluorimetric	H ₂ O	6.6×10 ⁻⁷	¹⁰ (2019)
HN K	Al ³⁺	Fluorimetric	DMSO/ H ₂ O	1.7×10^{-7}	¹¹ (2019)
	Al ³⁺	Fluorimetric Colorimetric	DMSO/MeOH	1.4×10 ⁻⁷	¹² (2015)
HO HO HO	Al ³⁺	Fluorimetric	EtOH	3.02×10 ⁻⁷	¹³ (2020)

Al ³⁺	Fluorimetric Colorimetric	DMSO	3.65×10 ⁻⁷	¹⁴ (2022)
Al ³⁺	Colorimetric	MeOH	1.75×10^{-6}	¹⁵ (2019)
Al ³⁺	Colorimetric	МеОН	2.0×10^{-7}	This work

Section 2. Compounds Characterization

1. Synthesis of C-D1a

20 mg of L-D1 was taken and placed in a 5 mL centrifuge tube, followed by the addition of 0.5 mL of methanol and sonication to facilitate dissolution. Subsequently, 50 μ L of sodium hydroxide methanol solution was added, resulting in a color change of the solution from deep red to brownish-yellow.

2. Synthesis of C-D1b

0.1 g of compound L-D1 was placed in a 20 mL sample bottle, followed by the addition of 5 mL of methanol and sonication until complete dissolution. Subsequently, 3 mL of anhydrous diethyl ether was slowly added to facilitate layering. The mixture was then left to stand in the dark for three days, resulting in the

formation of 0.031 g of grayish-white crystalline solids, with a yield of 31%.

3. Synthesis of C-D2a

The synthesis of compound C-D2a was conducted following the method used for C-D1a.

4. ¹H NMR spectra, ¹³C NMR spectra, FT-R and HRMS spectra

AFD: ¹H NMR (400 MHz, CDCl3) δ 8.48, 8.47, 8.36, 7.88, 7.87, 7.86, 6.77, 6.77, 6.77, 6.76, 6.76, 6.76, 6.76, 6.76, 1.78. ¹³C NMR (101 MHz, CDCl₃) δ 163.25, 160.21, 150.49, 150.20, 141.21, 128.12, 115.31, 107.50, 104.52, 27.55.

Fig S1. ¹H NMR Spectrum of AFD in CDCl₃ (400 MHz)

Fig S3. ¹H NMR spectrum of L-D1(DMSO-d6, 400 MHz)

Fig S4. ¹H NMR spectrum of L-D2 (DMSO-d6 , 400 MHz)

Scheme S1 Synthetic routes of L-D1 and L-D2

Section 3. The effect of solvents on L-D1 and L-D2

Fig S7. The normalized plot of the absorption values of L-D1(a) and L-D2(b) in different solvents as a function of time under dark conditions.

Section 4. Exploration of photoswitching and thermal recovery

Fig S8. Comparison of the photoswitching ability of L-D1 in different solvents (irradiation time: 1h, 50µM, observed by naked eye colorimetry with potential errors).

Fig S9. Comparison of the photoswitching ability of L-D2 in different solvents (irradiation time: 2 h, 20 μ M, observed by naked eye colorimetry with potential errors).

Fig S10. (a) UV-visible absorption spectra of the photo-induced isomerization process of L-D1 in dichloromethane, tetrahydrofuran, and chloroform. (b) UV-visible absorption spectra of the photo-induced isomerization process of L-D2 in dichloromethane, tetrahydrofuran, and chloroform. (1: DCM, 2: THF, 3: chloroform, 20μM)

Fig S11. (a) UV-visible absorption spectra of the thermally-induced isomerization process of L-D1 in dichloromethane, tetrahydrofuran, and chloroform. (b) UV-visible absorption spectra of the thermally-induced isomerization process of L-D2 in dichloromethane, tetrahydrofuran, and chloroform. (1: DCM, 2: THF, 3: chloroform, 20 μ M)

Section 5. Kinetic discussion of the dark recovery process of L-D1 and L-D2 in toluene solvent¹⁸⁻²⁰.

Fig S12. Kinetic fitting graph of the transformation from linear to cyclic structure of L-D1 (a) and L-D2 (b) in toluene under dark conditions. (20 μ M)

Open form
$$\begin{array}{c} k_1 \\ \hline k_{-1} \end{array}$$
 Cyclic form

The rates of opening and closing follow first-order kinetics, and the model can be represented as:

Equation.1 $y == 1 - \frac{k_1 + k_{-1}e^{-(k_1 + k_{-1})t}}{k_1 + k_{-1}}$ The fitting of this process yields the following results:

L-D1: k: 10⁻³; k₋₁: 4×10⁻³ L-D2: k:3×10⁻⁵; k₋₁: 7×10⁻³

In addition, the process of change conforms to the law of exponential functions:

$$Equation.2 \ y = y_0 + Ae^{R_0 t}$$

(y: Content fractions of open ring structures; y₀: initial value; A: amplitude; R₀: rate constant; t: time(s))

Calculation of apparent half-life formula($t_{1/2}$):

Equation.3
$$t_{\frac{1}{2}} = \frac{ln_{1/2}}{R_0}$$

Fitting the dark recovery process yields half-lives for L-D1 and L-D2: L-D1: 155s , L-D2: 117s.

Section 6. Changes induced by acid-base stimulation

Fig S13. UV-Vis absorption spectra of L-D1 (a) and L-D2 (b) in response to the addition of OH⁻ in methanol solvent and cycling with trifluoroacetic acid.

Fig S14. UV-Vis absorption spectra of L-D1 (a) and L-D2 (b) in response to cyclic addition of ethylenediamine and trifluoroacetic acid in methanol solvent.

Fig S15. ¹H NMR comparison of L-D1 before and after OH⁻ addition. (where the

peaks labelled with hearts are solvent peaks)

Fig S16. ¹H NMR comparison of C-D1b before and after base addition.

Section 7. Investigation of metal ion responsiveness

Fig S17. (a) Changes in absorbance over time in methanol solution of L-D2 upon addition of copper ions and iron ions (monitored at λ_{max} of 519 nm). (b) Comparison of absorbance intensity in methanol solution of L-D2 containing various metal ions (monitored at λ_{max} of 519 nm). (c) Colorimetric changes in methanol solution of L-D1 after the addition of various metal ions. (The concentrations of the metal ions are all

10⁻³ M, L-D2: 20 µM)

LOD (Limit of Detection) : Equation.4 $LOD = \frac{3SD}{K}$

where SD is the standard deviation of the blank sample, and K is the slope of the linear curve.

Fig S18. (a) Upon the addition of various amounts of copper ions, the UV-visible absorption spectra of L-D2 in methanol solutions were measured. (b) Upon the addition of various amounts of copper ions, the UV-visible absorption spectra of L-D2 in methanol solutions were measured. (c) Upon the addition of various amounts of iron ions, the UV-visible absorption spectra of L-D2 in methanol solutions were measured. (d) L-D2 detection limits for iron ions (monitored at λ_{max} of 519 nm).

Fig S19. ¹H NMR comparison of C-D2a before and after addition of Al³⁺. (where the peaks labelled with hearts are solvent peaks)

Section 8. References

References

- [1] D. Zhong, Z. Cao, B. Wu, Q. Zhang and G. Wang, Sens. Actuators B Chem., 2018, 254, 385-392.
- [2] G.J. Park, G.R. You, Y.W. Choi and C. Kim, Sens. Actuators B Chem., 2016, 229, 257-271.
- [3] J. Wang, T. Wei, F. Ma, T. Li and Q. Niu, J. Photochem. Photobiol. A, 2019, 383, 111982.
- [4] B. Zhang, H. Liu, F. Wu, G. Hao, Y. Chen, C. Tan, Y. Tan and Y. Jiang, Sens. Actuators B Chem., 2017, 243, 765-774.
- [5] A. Senthil Murugan, N. Vidhyalakshmi, U. Ramesh and J. Annaraj, *Sens. Actuators B Chem.*, 2018, **274**, 22-29.
- [6] O. García-Beltrán, B. Cassels, C. Pérez, N. Mena, M. Núñez, N. Martínez, P.

Pavez and M. Aliaga, Sensors, 2014, 14, 1358-1371.

- [7] S.M. Kumar, S. Munusamy, S. Manickam, D. Jothi, S. Enbanathan and S.K. Iyer, J. Mol. Liq., 2023, 381, 121828.
- [8] B. Musikavanhu, Z. Huang, Q. Ma, Y. Liang, Z. Xue, L. Feng and L. Zhao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2023, 301, 122961.
- [9] B. Rani, A. Agarwala, D. Behera, V.P. Verma, A.P. Singh and R. Shrivastava, Dyes Pigment., 2021, 194, 109596.
- [10] L. Wang, J. Yang, H. Wang, C. Ran, Y. Su and L. Zhao, Sensors, 2019, 19, 2423.
- [11] A. Saravanan, S. Shyamsivappan, T. Suresh, G. Subashini, K. Kadirvelu, N. Bhuvanesh, R. Nandhakumar and P.S. Mohan, *Talanta*, 2019, **198**, 249-256.
- [12] V.K. Gupta, N. Mergu, L.K. Kumawat and A.K. Singh, *Talanta*, 2015, 144, 80-89.
- [13] X. Sun, T. Liu, N. Li, S. Zeng and Z. Xing, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 228, 117786.
- [14] P. Fu, Q. Yan, S. Wang, H. Wu and D. Cao, New J. Chem., 2022, 46, 12600-12608.
- [15] Y. Cai, T. Chen, X.Q. Chen and X. Bao, Org. Lett., 2019, 21, 7445-7449.
- [16] M.M. Sroda, F. Stricker, J.A. Peterson, A. Bernal and J. Read De Alaniz, *Chem-Eur. J.*, 2021, 27, 4183-4190.
- [17] C. Reichardt, Chem. Rev., 1994, 94, 2319-2358.
- [18] J.R. Hemmer, Z.A. Page, K.D. Clark, F. Stricker, N.D. Dolinski, C.J. Hawker and J. Read De Alaniz, J. Am. Chem. Soc., 2018, 140, 10425-10429.
- [19] T.Y. Chen, Y.D. Cai, S.Q. Jiang, W. Cai, M.L. Tong and X. Bao, *ChemPhotoChem*, 2021, 5, 559-564.
- [20] M.M. Lerch, S.J. Wezenberg, W. Szymanski and B.L. Feringa, J. Am. Chem.

Soc., 2016, 138, 6344-6347.