Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

## **Supplementary Material**

## Hinge motif unveils the cryptic structural determinants of selective inhibitors towards PI3K α and VPS34

Huibin Wang<sup>a,b,c</sup>, Shuyang Shi<sup>b</sup>, Baichun Hu<sup>b</sup>, Na Duan<sup>a\*</sup>

a. Department of Cardiology, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang 110016, People's Republic of China

b. Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China

c. Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan

\*Corresponding authors: Prof. Na Duan, E-mail address: naduan@hotmail.com.

| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | MPPRPSSGELWGIHLMPPRILVECLLPNGMIVTLECLREATLITIKHELFKEARKYPLHQ                                                                                                                   | 60<br>0     |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | LLQDESSYIFVSVTQEAEREEFFDETRRLCDLRLFQPFLKVIEPVGNREEKILNREIGFA                                                                                                                   | 120<br>0    |
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | IGMPVCEFDMVKDPEVQDFRRNILNVCKEAVDLRDLNSPHSRAMYVYPPNVESSPELPKH                                                                                                                   | 180<br>0    |
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | IYNKLDKGQIIVVIWVIVSPNNDKQKYTLKINHDCVPEQVIAEAIRKKTRSMLLSSEQLK                                                                                                                   | 240<br>0    |
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | LCVLEYQGKYILKVCGCDEYFLEKYPLSQYKYIRSCIMLGRMPNLMLMAKESLYSQLPMD<br>QLQL                                                                                                           | 300<br>21   |
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | CFTMPSYSRRISTATPYMNGETSTKSLWVINSALRIKILCATYVNVNIRDIDKIYVRTGI<br>KIGSLEGKREQKSYKAVLEDPMLKFSGLYQETCSDLYVTCQV                                                                     | 360<br>63   |
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | YHGGEPLCDNVNTQRV-PCSNPRWNEWLNYDIYIPDLPRAARLCLSICSVKGRKGAKEEH<br>FAEGKPLALPVRTSYKAFSTRWNWNEWLKLPVKYPDLPRNAQVALTIWDVYGPGKA                                                       | 419<br>119  |
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | CPLAWGNINLFDYTDTLVSGKMALNLWPVPHGLEDLLNPIGVTGSNP<br>VPVGGTTVSLFGKYGMFRQGMHDLKVWPNVEADGSEPTKTPGRTSSTLSEDQMSRLAK<br>*::.**:.* *::**:* . *.                                        | 466<br>177  |
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | NKETPCLELEFDWFSSVVKFPDMSVIEEHANWSVSREAGFSYS<br>LTKAHRQGHMVKVDWLDRL-TFREIEMINESEKRSSNFMYLMVEFRCVKCDDKEYGIVYY<br>::::**::::*:*:*:*                                               | 509<br>236  |
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | ARDNELRENDKEQL<br>EKDGDESSPILTSFELVKVPDPQMSMENLVESKHHKLARSLRSGPSDHDLKPNAATRDQL<br>* *:. * :* : . ::**                                                                          | 531<br>296  |
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | KAISTRDPLSEITEQEKDFLWSHRHYCVTIPEILPKLLLSVKWNSRDEVAQMYCLVKDWP<br>NIIVSYPPTKQLTYEEQDLVWKFRYYLTNQEKALTKFLKCVNWDLPQEAKQALELLGKWK<br>: * : * .::* :*:*:**:* : * *:*.*: :*. * *: .*  | 591<br>356  |
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | PIKPEQAMELLDCNYPDPMVRGFAVRCLEKYLTDDKLSQYLIQLVQVLKYEQYLDN<br>PMDVEDSLELLSSHYTNPTVRRYAVARLRQA-DDEDLLMYLLQLVQALKYENFDDIKNGL<br>*:. *:::***:* :* ** :** *.: *:.* **:*****.****:: * | 647<br>415  |
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | LL<br>EPTKKDSQSSVSENVSNSGINSAEIDSSQIITSPLPSVSSPPPASKTKEVPDGENLEQDL<br>*                                                                                                        | 649<br>475  |
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | VRFLLKKALTNQRIGHFFFWHLKSEMHNKTVSQRFGLLLESYCRACGMYLKHLNRQV<br>CTFLISRACKNSTLANYLYWYVIVECEDQDTQQRDPKTHEMYLNVMRRFSQALLKGDKSV<br>**:.:*.*.:::::::::*.:* *.::** ** :: * :*          | 706<br>535  |
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | EAMEKLINLTDILKQEKKDETQK-VQMKFLVEQMRRPDFMDALQGFLSP<br>RVMRSLLAAQQTFVDRLVHLMKAVQRESGNRKKKNERLQALLGDNEKMN-LSDVELIPLP<br>* ::*::*. :::*. :.:* ::: *: :: : : : :                    | 754<br>594  |
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | LNPAHQLGNLRLEECRIMSSAKRPLWLNWENPDIMSELLFQNNEIIFKNGDDLRQDMLTL<br>LEPQVKIRGIIPETATLFKSALMPAQLFFKTEDGGKYPVIFKHGDDLRQDQLIL<br>*:* :: .: * . ::.** * * ::. : :***:****** *          | 814<br>648  |
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | QIIRIMENIWQNQGLDLRMLPYGCLSIGDCVGLIEVVRNSHTIMQIQCKGGLKGALQFNS<br>QIISLMDKLLRKENLDLKLTPYKVLATSTKHGFMQFIQSVPVAEVLDTEGSIQNFFR<br>*** :*::: ::***:: ** *: . *:::: :: :*.::. ::      | 874<br>705  |
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | HTLHQWL-KDKNKGEIYDAAIDLFTRSCAGYCVATFILGIGDRHNSNIMVKDDGQLFHID<br>KYAPSENGPNGISAEVMDTYVKSCAGYCVITYILGVGDRHLDNLLLTKTGKLFHID<br>:: .::. * .:*::****** *:***:*** .::*               | 933<br>761  |
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | FGHFLDHKKKKFGYKRERVPFVLTQDFLIVISKGAQECTKTREFERFQEMCYKAYLAIRQ<br>FGYILGRDPKPLPPPMKLNKEMVEGMGGTQSEQYQEFRKQCYTAFLHLRR<br>**::*.:. * : *: *: *: *: *:::::::::::::                  | 993<br>811  |
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | HANLFINLFSMMLGSGMPELQSFDDIAYIRKTLALDKTEQEALEYFMKQMNDAHHGGW<br>YSNLILNLFSLMVDANIPDIALEPDKTVKKVQDKFRLDLSDEEAVHYMQSLIDESVHALF<br>::**::****:*:.::*:: * ::::*:::*:::*:::*:         | 1051<br>871 |
| P42336   PK3CA_HUMAN<br>Q8NEB9   PK3C3_HUMAN | TTKMDWIFHTIKQHALN 1068<br>AAVVEQIHKFAQYWRK– 887<br>:: :: *. :                                                                                                                  |             |

| Identical positions | 203      |
|---------------------|----------|
| Identity            | 27.51%   |
| Similar positions   | 302      |
| Program             | CLUSTALO |

## Figure S1. UniProt Align results of human PI3K $\alpha$ and mouse PI3K $\beta$ protein sequence.

|                             | 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |               | 01303         |             |             | 19969       |             | 110    |
|-----------------------------|----------------------------------------|---------------|---------------|-------------|-------------|-------------|-------------|--------|
|                             | Vps34                                  | Р             | PI3K Class II |             |             |             |             |        |
|                             | (4OYS)                                 | α (4JPS)      | β             | δ           | Ŷ           | α           | β           | γ      |
|                             | F612                                   | M772          | М             | М           | М           | F           | F           | F      |
| P-loop                      | K613                                   | S773          | D             | D           | А           | S           | N           | ٦      |
|                             | L616                                   | K776          | М             | М           | К           | А           | A           | A      |
| Induced pocket<br>of PI3KC1 | Q620                                   | W780          | W<br>I<br>Y   | W<br>I<br>Y | W<br>I<br>Y | K<br>M<br>F | K<br>I<br>F | к<br>I |
| Тор                         | 1634                                   | 1800          |               |             |             |             |             |        |
| Bottom                      | Y670                                   | Y836          |               |             |             |             |             |        |
| Gate Keeper                 | M682                                   | 1848          | I             | Т           | I           | V           | V           | \      |
|                             | Q683                                   | E849          | E             | E           | E           | Е           | E           | (      |
|                             | F684                                   | V850          | V             | V           | I           | L           | М           | r      |
|                             | 1685                                   | V851          | V             | V           | V           | V           | I           | `      |
| Hinge                       | Q686                                   | R852-<br>N853 | S-T           | L-H         | K-D         | Ρ           | Р           | F      |
|                             | S687                                   | S854          | S             | S           | А           | А           | Ν           | [      |
|                             | V688                                   | H855          | E             | D           | Т           | S           | А           |        |
| Entropoo                    | P689                                   | T856          | Т             | Т           | Т           | D           | Е           | Ň      |
| Entrance                    | D747                                   | S919          | D             | D           | D           | D           | D           | [      |
| Floor                       | L750                                   | M922          | М             | М           | М           | М           | М           | I      |
| FIOOF                       | F758                                   | F930          | F             | F           | F           | F           | F           |        |

B

| Sequence alignment of hinge region |        |     |   |   |   |   |   |   |   |     |   |   |   |   |
|------------------------------------|--------|-----|---|---|---|---|---|---|---|-----|---|---|---|---|
| VPS34                              | (40YS) | 684 | F | I | Q |   | S | V | Р | V   | А | Е | V | L |
| ΡΙ3Κα                              | (4JPS) | 850 | V | v | R | N | S | н | т | - I | М | Q | I | Q |
| ΡΙ3Κβ                              | (4BFR) | 847 | V | v | S | Т | S | E | т | - I | А | D | I | Q |
| ΡΙ3Κδ                              | (5083) | 827 | V | v | L | н | S | D | т | - I | A | N | I | Q |
| ΡΙ3Κγ                              | (5JHB) | 881 | I | v | К | D | A | Т | т | I.  | A | К | I | Q |

**Figure S2.** Comparison of VPS34 structure versus the other classes of PI3Ks. Residues surrounding the ligand are listed, with their equivalence in the other kinases (only non-conserved residues are listed). The color in orange corresponds to identical residues with VPS34.



**Figure S3.** The comparisons between the predicted and experimental poses for PI3K $\alpha$  (A), and VPS34 (B). The purple sticks represented the experimental pose extracted from X-ray structure, and the orange sticks represented the docked pose.



**Figure S4.** RMSD plots of the protein backbones throughout MD simulations process. (A) The RMSD line chart for the protein backbones of PI3K $\alpha$  and VPS34. (B) The average bar chart for the protein backbones of PI3K $\alpha$  and VPS34. The average value was labeled on top of each bar, and the error bar indicated the highest value of RMSD during the simulation.



**Figure S5.** Snapshoots of the MD simulated ligand-protein complex at different time intervals. (A) PI3Kα/Compd1. (B) PI3Kα/Compd2. (C) VPS34/Compd1. (D) VPS34/Compd2.



**Figure S6.** RMSF plots of each residue of PI3K $\alpha$  and VPS34 obtained from the equilibrium states of MD simulations. (A) RMSF chart of PI3K $\alpha$ . (B) RMSF chart of VPS34. (C)  $\Delta$ RMSF chart of PI3K $\alpha$ . (D)  $\Delta$ RMSF chart of VPS34.



**Figure S7.** Ligand Torsion Profile of four complexes. (A) PI3Kα/Compd1. (B) VPS34/Compd1. (C) PI3Kα/Compd2. (D) VPS34/Compd2.



Figure S8. Ligand-Protein contacts of PI3Kα/Compd1 complex.



Figure S9. Ligand-Protein contacts of VPS34/Compd1 complex.



Figure S10. Ligand-Protein contacts of PI3Ka/Compd2 complex.



Figure S11. Ligand-Protein contacts of VPS34/Compd2 complex.



**Figure S12.** Variation in the ligand's properties w.r.t time during the 100 ns MD simulation. (A) PI3Kα/Compd1. (B) VPS34/Compd1. (C) PI3Kα/Compd2. (D) VPS34/Compd2.



**Figure S13.** SASA analysis of four complexes. (A) PI3Kα/Compd1. (B) VPS34/Compd1. (C) PI3Kα/Compd2. (D) VPS34/Compd2.



**Figure S14.** RMSD plots of α-C atoms during the 100 ns MD simulation from GROMACS. (A) PI3Kα apo. (B) PI3Kα/Compd1. (C) PI3Kα/Compd2. (D) VPS34 apo. (E) VPS34/Compd1. (F) VPS34/Compd2.



**Figure S15.** The calculated MM/PBSA binding energy on a per-residue basis in the binding pocket of each complex. (A) PI3Kα/Compd1. (B) (A) PI3Kα/Compd2. (C) VPS34/Compd1. (D) VPS34/Compd2.



**Figure S16.** The results of DCCM analysis. (A) PI3Kα apo. (B) PI3Kα/Compd1. (C) PI3Kα/Compd2. (D) VPS34 apo. (E) VPS34/Compd1. (F) VPS34/Compd2. The residue number was rearranged according to the original sequence.



Figure S17. Hirshfeld surfaces map for the four complexes. (A) PI3Kα/Compd1.(B) VPS34/Compd1. (C) PI3Kα/Compd2. (D) VPS34/Compd2.



**Figure S18.** Fingerprint plots of intermolecular interaction from Hirshfeld surface analysis. (A) PI3Kα/Compd1. (B) VPS34/Compd1. (C) PI3Kα/Compd2. (D) VPS34/Compd2.



**Figure S19.** Alanine scanning mutagenesis analysis of PI3Kα/Compd1 complex (A), PI3Kα/Compd2 complex (B), VPS34/Compd1 complex (C), and VPS34/Compd2 complex (D).