Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supplementary Information

Study on fluorescence properties both in solutions and the solid states of three *N,O*-chelated difluoroboron compounds and their application in latent fingerprint imaging and ink-free writing

Haiyan Luo¹, Chunlin Chen¹, Shan Li, Bangcui Zhang, Fafen Chen, Jiazhuang Tian, Shulin Gao, Jianfei

Wang*, Xiangguang Li**, Yanhua Yang***

Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and

Chemical Engineering, Kunming University, Kunming, 650214, P. R. China.

Content

Figure S1 ¹ H NMR and ¹³ C NMR spectra of compound 1-1 ······3
Figure S2 ¹ H NMR and ¹³ C NMR spectra of compound 1-2 ······3
Figure S3 ¹ H NMR and ¹³ C NMR spectra of compound 2-1 ······4
Figure S4 ¹ H NMR and ¹³ C NMR spectra of compound 3-1 ······4
Figure S5 ¹ H NMR, ¹³ C NMR, and ¹⁹ F NMR spectra of compound 1-BF₂ ·······
Figure S6 ¹ H NMR, ¹³ C NMR, and ¹⁹ F NMR spectra of compound 2-BF ₂ ······
Figure S7 ¹ H NMR, ¹³ C NMR, and ¹⁹ F NMR spectra of compound 3-BF₂ ······
Figure S8 HRMS of compound 1-BF ₂ ······8
Figure S9 HRMS of compound 2-BF ₂ ······8
Figure S10 HRMS of compound 3-BF ₂ ······8
Figure S11 Lippert-Mataga plots of three compounds in different solvents9
Figure S12 Absorption spectra of three compounds in DMSO/H ₂ O mixtures ········9
Figure S13 Emission spectra of three compounds in THF/H $_2O$ mixtures and plots of emission peak
intensity versus f _w ······10
Figure S14 Absorption spectra of three compounds in THF/H ₂ O mixtures
Figure S15. Normalized emission spectra and XRD patterns of compound 2-BF ₂ 11
Figure S16. Normalized emission spectra and XRD patterns of compound 3-BF ₂ 11
Figure S18 The τ of compound 1-BF ₂ in as-synthesized and grinding states
Figure S19 The τ of compound 2-BF ₂ in as-synthesized and grinding states
Figure S20 The τ of compound 3-BF ₂ in as-synthesized and grinding states
Figure S21 The Φ_f of compound 1-BF ₂ in as-synthesized and grinding states
Figure S22 The Φ_f of compound 2-BF ₂ in as-synthesized and grinding states
Figure S23 The Φ_f of compound 3-BF ₂ in as-synthesized and grinding states
Figure S23 The DSC of compound 1-BF ₂ in as-synthesized and grinding states14
Figure S24 SEM images of developers based on compounds 1-BF ₂ and 3-BF ₂ 15
Figure S25 The Φ_f of developers based on compounds 1-BF ₂ and 3-BF ₂ 16
Figure S26 Photographs of LFPs undergoing different aging times with $1\text{-}BF_2$ and $3\text{-}BF_2$ contrast

* Correspond author, E-mail address: wang03507856284@126.com (J. Wang)

lixiangguang@iccas.ac.cn (X. Li)

yh_yangkmu@126.com (Y. Yang)

¹ The authors contribute equally to this paper.

agents on tinfoil (365 nm UV light) ······	16
Table S1 Photophysical data in various organic solvents Table S2 The emission wavelengths and intensities in mixtures of DMSO/water	·····17 ·····17
Computational details ······ Cartesian coordinates ······	·····18 ·····19

Figure S10 HRMS of compound 3-BF₂.

10⁻⁵ mol/L), respectively.

Figure S13 (a) Emission spectra of three compounds in THF/H₂O mixtures with different f_w (c = 1 × 10⁻⁵ mol/L, excited at 390 nm), and (b) plots of emission peak intensity versus f_w . Inset: photos in different f_w under 365 nm irradiation.

Figure S14 Absorption spectra of three compounds in THF/H₂O mixtures with different f_w (c = 1 × 10⁻⁵ mol/L), respectively.

Figure S15 (a) Normalized emission spectra (λ_{ex} = 390 nm) and (b) XRD patterns of compound 2-BF₂ in different solid states. Inset: photos of luminescence colors change under a 365 nm UV lamp irradiation.

Figure S16 (a) Normalized emission spectra (λ_{ex} = 390 nm) and (b) XRD patterns of compound **3-BF**₂ in different solid states. Inset: photos of luminescence colors change under a 365 nm UV lamp irradiation.

Figure S18 The τ of compound 2-BF₂ in (a) as-synthesized and (b) grinding states.

Figure S19 The τ of compound 3-BF₂ in (a) as-synthesized and (b) grinding states.

Figure S20 The Φ_f of compound **1-BF**₂ in as-synthesized (up) and grinding (down) states.

Figure S21 The Φ_f of compound 2-BF₂ in as-synthesized (up) and grinding (down) states.

Figure S22 The Φ_f of compound **3-BF**₂ in as-synthesized (up) and grinding (down) states.

Figure S23 The DSC of compound $1-BF_2$ in as-synthesized (up) and grinding (down) states.

Figure S26 Photographs of LFPs undergoing different aging times with $1-BF_2$ and $3-BF_2$ contrast agents on tinfoil (365 nm UV light)

		1		-/			0	
		<i>n</i> -hexane	PhCl	CH ₂ Cl ₂	THF	EtOAc	CH₃CN	CH₃OH
	UV (λ _{abs} , nm)	282, 377	285, 384	287, 379	289, 391	286, 386	286, 383	288, 387
1 05	PL (λ _{em} , nm)	444	481	484	510	502	546	538
1-DF2	Δν _{st} (10 ³ , cm ⁻ 1) ^a	4.0027	502516	5.7241	5.9676	5.9864	7.7946	7.2524
	UV (λ _{abs} , nm)	312, 395	315, 397	313, 394	311, 387	309, 385	308, 383	310, 386
2 DE	PL (λ _{em} , nm)	500	504	513	504	507	508	509
2-DF ₂	Δν _{st} (10 ³ , cm ⁻ 1) ^a	5.3161	5.3476	5.8875	5.9985	6.2502	6.4246	6.2604
	UV (λ _{abs} , nm)	312, 396	315, 396	314, 394	311, 386	309, 385	309, 384	310, 387
2 DE	PL (λ _{em} , nm)	496	508	513	504	501	509	509
3-BF2	$\Delta v_{\rm st} (10^3, {\rm cm}^3)^a$	501552	505675	508875	6.0655	6.0139	6.3953	6.1934
	Δf^{b}	-0.006	0.1425	0.2185	0.1906	0.2	0.3055	0.3085

Table S1 Photophysical data of compounds 1-BF₂, 2-BF₂ and 3-BF₂ in various organic solvents.

 $^{a}\Delta v_{st} = \Delta v_{ICT, abs} - \Delta v_{em}$

 ${}^{b}\Delta f$ referred to solvent polarity parameters, it was calculated as follows:

$$\Delta f = \frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1}$$

where ε was the static dielectric constant, *n* was the optical refractive index of the solvent.

Table S2 The emission	wavelengths and	intensities of	compounds	1-BF ₂ , 2-BF ₂	and 3-BF2 in	mixtures
of DMSO/water.						

	<i>f</i> _w (%)	0	10	20	30	40	50	60	70	80	90	100
1.05	Wavelength (nm)	557	542	547	541	536	534	522	485	464	464	497
1-DF2	Intensity (a.u.)	18	13	18	19	17	16	13	15	82	275	782
2 05	Wavelength (nm)	511	512	513	515	516	506	502	502	502	502	504
2-DF ₂	Intensity (a.u.)	149	153	155	146	106	92	114	135	84	119	60
3-BF ₂	Wavelength (nm)	509	512	514	517	516	490	489	504	498	504	504
	Intensity (a.u.)	707	914	872	811	492	78	157	658	546	478	337

Computational details

Kohn-Sham density functional theory (DFT) has been employed to optimize the ground state geometries of the investigated complexes at the B3LYP/6-31G(d, p) level. All the optimized geometries were tested to be local minima by frequency calculations at the same level. To get insight into the photophysical properties of the investigated complexes, time-dependent density functional theory (TD-DFT) calculations at the CAM-B3LYP¹/6-31G(d, p) have been performed. The effect of the solvent was considered in all DFT and TD-DFT calculations utilizing the integral equation formalism polarized continuum model (IEF-PCM) with the dichloromethane as solvent which has been employed in the experiment. All the DFT and TD-DFT calculations were performed using the Gaussian 16 software suit.²

References

- 1. Yanai, T.; Tew, D. P.; Handy, N. C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). *Chemical Physics Letters* **2004**, *393* (1-3), 51-57.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16 Rev. A.03*, Gaussian, Inc.: Wallingford, CT, 2016.

Car	tesian coordi	inates at th	e IEF-PCM-	Н	7.289534	0.243817	2.176965
B3L	YP/6-31G(d. p)) level.		Н	8.093346	0.176322	0.608947
	,			Н	-7.197690	-3.595329	0.671152
15				Н	-8.104336	-2.196783	0.371248
	F _			F	-1.553089	3.543997	-1.161401
1-D	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 875485	-0 370272	F	-1.646670	3.209021	1.101135
c	0 996746	2 495362	-0.410978				
N	-0 161313	1 821034	-0 203705	81			
C	-0 146662	0 473821	0.026344	2-B	F ₂		
C	1 091874	-0 193889	0.087232	С	7.839646	-0.589895	-1.915389
C	2.291058	0.483905	-0.106466	С	6.919916	-1.216672	-2.747968
C	3.594822	-0.217296	-0.044966	Ν	5.603796	-1.291272	-2.502523
N	-1.298013	-0.237998	0.188297	С	5.176190	-0.741541	-1.362952
C	-2.456409	0.345873	-0.027263	С	6.017900	-0.090842	-0.449536
C	-3.690573	-0.434609	0.045202	С	7.386163	0.003487	-0.724085
0	-2.606823	1.623972	-0.339816	С	8.314809	0.688286	0.209693
В	-1.529140	2.608995	-0.144187	Ν	3.794497	-0.779910	-1.083809
C	4.731061	0.438534	0.452986	С	2.901597	-1.788894	-1.402589
C	5.966388	-0.212999	0.529550	С	1.471980	-1.492382	-1.041661
C	6.052278	-1.535795	0.079925	0	3.221476	-2.851196	-1.919417
C	4.939060	-2.216362	-0.431389	С	7.904824	1.830806	0.917190
C	3.713901	-1.546699	-0.482235	С	8.770484	2.488695	1.794138
C	-4.946641	0.179069	-0.124976	С	10.066475	1.980643	1.961753
С	-6.117243	-0.556284	-0.050842	С	10.504580	0.842210	1.277145
C	-6.078445	-1.946218	0.198696	С	9.618270	0.208233	0.398158
C	-4.818082	-2.564248	0.368459	С	0.619553	-2.582081	-0.812542
С	-3.653986	-1.821425	0.291730	С	-0.717641	-2.387712	-0.492095
С	5.072042	-3.632509	-0.940456	С	-1.227883	-1.084348	-0.417250
С	7.172763	0.484356	1.113255	С	-0.389697	0.012163	-0.647222
Ν	-7.234723	-2.689363	0.226745	С	0.951442	-0.193883	-0.962131
н	3.114760	2.453583	-0.566153	С	11.892146	0.288225	1.502851
н	0.887536	3.552650	-0.618397	С	8.330615	3.725845	2.541915
н	1.066260	-1.254157	0.304097	Ν	-2.610103	-0.888047	-0.103705
н	4.648945	1.458894	0.815914	С	-3.314293	-0.007333	-0.772628
н	7.010350	-2.049233	0.127006	С	-4.666200	0.304006	-0.468311
н	2.849168	-2.055615	-0.897547	С	-5.266097	-0.287165	0.673008
н	-4.993115	1.245938	-0.310761	С	-6.601781	0.051047	1.021471
н	-7.077119	-0.064984	-0.182653	С	-7.248555	0.956515	0.183282
н	-4.770569	-3.633008	0.557816	С	-6.682083	1.562547	-0.968528
н	-2.691539	-2.302269	0.424026	С	-5.379753	1.222494	-1.275119
н	5.648625	-4.251659	-0.245876	0	-4.565064	-1.133536	1.421673
н	4.094128	-4.099735	-1.082273	С	-7.294036	-0.564368	2.255199
н	5.594758	-3.657674	-1.903990	С	-7.364847	-2.104444	2.104639
н	7.084635	1.571186	1.031777	С	-6.512742	-0.192924	3.539938

С	-8.736490	-0.046811	2.423457	Н	-8.556634	3.416740	-0.060927
С	-7.521348	2.546487	-1.801992	F	-3.477308	-3.039705	0.599631
С	-6.732492	3.100488	-3.002983				
С	-8.779334	1.824173	-2.340279	75			
С	-7.954020	3.738585	-0.915575	3-B	F ₂		
В	-3.280831	-1.741810	1.066474	С	8.472439	0.659289	-1.382480
F	-2.440542	-1.720817	2.162533	С	7.605732	0.620513	-2.468452
н	8.884137	-0.540190	-2.201305	Ν	6.282817	0.423529	-2.374977
н	7.253317	-1.671507	-3.678580	С	5.791853	0.228641	-1.148421
н	5.611778	0.305873	0.475067	С	6.576877	0.240122	0.013718
н	3.472678	-0.097738	-0.411840	С	7.952302	0.470172	-0.090097
н	6.907177	2.230081	0.758042	С	8.822126	0.500994	1.112175
н	10.750111	2.486368	2.640537	Ν	4.401491	0.042886	-1.007425
н	9.941551	-0.686342	-0.126603	С	3.543190	-0.590111	-1.890690
н	1.022549	-3.585236	-0.894756	С	2.096039	-0.562101	-1.482410
н	-1.376834	-3.227995	-0.314827	0	3.904232	-1.151516	-2.916440
н	-0.775385	1.022423	-0.559985	С	8.354202	1.032052	2.326195
н	1.578329	0.668729	-1.163941	С	9.173468	1.061965	3.453850
н	12.591839	1.074276	1.800599	С	10.474772	0.559006	3.390396
н	11.890376	-0.465862	2.299435	С	10.951557	0.027535	2.190106
н	12.281815	-0.193679	0.601466	С	10.134240	0.000405	1.060983
н	7.306824	4.007144	2.282254	С	1.266855	-1.585413	-1.963946
н	8.371432	3.568676	3.625681	С	-0.083941	-1.620167	-1.643982
н	8.981605	4.578133	2.317855	С	-0.631120	-0.606253	-0.845666
н	-2.835500	0.504820	-1.604951	С	0.183601	0.423170	-0.361628
н	-8.269644	1.220951	0.426660	С	1.538723	0.445287	-0.683826
н	-4.870895	1.644021	-2.134725	Ν	-2.026700	-0.636620	-0.530964
н	-7.857036	-2.539498	2.981530	С	-2.735920	0.464554	-0.590467
н	-7.950108	-2.379553	1.220509	С	-4.104413	0.531878	-0.216053
Н	-6.373465	-2.549436	2.013020	С	-4.720223	-0.617714	0.341763
н	-7.013994	-0.622602	4.414307	С	-6.076201	-0.556571	0.762720
н	-6.480383	0.894014	3.672454	С	-6.724704	0.662994	0.582190
Н	-5.489209	-0.568106	3.514262	С	-6.142025	1.831232	0.024980
н	-9.369889	-0.301113	1.567132	С	-4.821063	1.743370	-0.366400
н	-9.180902	-0.511590	3.308838	0	-4.016413	-1.736281	0.488968
н	-8.772103	1.037944	2.569662	С	-6.787088	-1.782561	1.372173
н	-7.363267	3.793570	-3.568054	С	-6.803013	-2.943514	0.346664
н	-5.840308	3.650492	-2.685734	С	-6.059887	-2.227337	2.665335
н	-6.420890	2.304920	-3.687783	С	-8.250322	-1.472463	1.745827
н	-9.388830	2.516391	-2.931260	С	-6.985859	3.110235	-0.113983
Н	-9.407195	1.437898	-1.531751	С	-6.180178	4.265506	-0.736630
Н	-8.502140	0.981874	-2.982543	С	-8.206739	2.827156	-1.021543
н	-7.081871	4.275948	-0.528873	С	-7.477794	3.560129	1.282339
н	-8.556649	4.443529	-1.498519	В	-2.705223	-2.015923	-0.100280

Н	9.526344	0.860575	-1.537123	Ν	-0.190196	1.842512	-0.215301
Н	7.990344	0.774941	-3.474509	С	-0.163691	0.464303	-0.015625
Н	6.120520	0.040287	0.977600	С	1.081794	-0.198046	0.043974
Н	4.039221	0.211071	-0.079406	С	2.280469	0.473965	-0.130951
Н	7.352563	1.447284	2.380601	С	3.575729	-0.221246	-0.056964
Н	8.797114	1.484848	4.380489	Ν	-1.293179	-0.234537	0.098249
Н	11.112245	0.581401	4.269049	С	-2.480120	0.371532	-0.075418
Н	11.959347	-0.372733	2.133487	С	-3.664465	-0.415538	0.018638
Н	10.507548	-0.435343	0.139477	0	-2.620958	1.665681	-0.373562
Н	1.699392	-2.351387	-2.597669	В	-1.541178	2.608029	-0.074487
Н	-0.724867	-2.410201	-2.014159	С	4.724354	0.456516	0.366335
Н	-0.231548	1.191645	0.281806	С	5.956865	-0.186956	0.446339
Н	2.147557	1.267479	-0.321800	С	6.035086	-1.529829	0.082502
Н	-2.248387	1.368237	-0.951050	С	4.910088	-2.235612	-0.349419
Н	-7.760564	0.728393	0.889519	С	3.690556	-1.572555	-0.413136
Н	-4.299730	2.591033	-0.796726	С	-4.949612	0.176816	-0.158652
Н	-7.305887	-3.814397	0.781605	С	-6.089127	-0.573141	-0.080955
Н	-7.353166	-2.654318	-0.555346	С	-6.018635	-1.970538	0.180754
Н	-5.795387	-3.240954	0.054218	С	-4.741919	-2.569343	0.364444
Н	-6.575244	-3.090699	3.100573	С	-3.604650	-1.817717	0.284758
Н	-6.066494	-1.423009	3.409025	С	5.028882	-3.681369	-0.756029
Н	-5.024632	-2.509467	2.471255	С	7.174520	0.545338	0.947093
Н	-8.847140	-1.182431	0.874707	Ν	-7.139893	-2.710340	0.252510
Н	-8.707469	-2.370955	2.171449	Н	3.082989	2.464230	-0.569409
Н	-8.326123	-0.678738	2.496542	Н	0.876968	3.560210	-0.593664
Н	-6.814985	5.153101	-0.818692	Н	1.049321	-1.262295	0.241116
Н	-5.314009	4.535106	-0.123301	Н	4.654925	1.496846	0.667734
Н	-5.826024	4.019106	-1.743034	Н	6.994488	-2.039063	0.132841
Н	-8.819377	3.729550	-1.123151	Н	2.820115	-2.108255	-0.778067
Н	-8.845771	2.037634	-0.614728	Н	-5.004653	1.239501	-0.357476
Н	-7.887292	2.518736	-2.022371	Н	-7.061436	-0.111596	-0.219121
Н	-6.632785	3.779061	1.943365	Н	-4.684748	-3.633505	0.568814
Н	-8.084849	4.467712	1.194645	Н	-2.631742	-2.271187	0.422483
Н	-8.093658	2.795977	1.766080	Н	5.459511	-4.283612	0.049267
F	-1.897328	-2.627771	0.838135	Н	4.055429	-4.105016	-1.010949
F	-2.850607	-2.804134	-1.239927	Н	5.682520	-3.793862	-1.626483
				Н	7.086136	1.622152	0.786803
Car	tesian coordii	nates at the	TD-IEF-PCM-	Н	7.314601	0.383872	2.021153
CA	M-B3LYP/6-310	G(d, p) level.		Н	8.080956	0.197731	0.445676
				Н	-7.101020	-3.702243	0.429637
45				Н	-8.050183	-2.295329	0.126567
1-B	F ₂			F	-1.562433	3.649557	-0.983628
С	2.194706	1.877878	-0.374636	F	-1.667471	3.088432	1.224186
С	0.972733	2.497287	-0.404587				

81				Н	8.914350	-0.933343	-1.906655
2-B	F ₂			Н	7.324290	-2.307255	-3.204007
С	7.860793	-0.925024	-1.654808	Н	5.572889	0.402196	0.447035
С	6.966199	-1.687591	-2.385492	Н	3.462676	-0.143440	-0.430949
Ν	5.648076	-1.708520	-2.174018	Н	6.885564	2.345867	0.378390
С	5.189221	-0.962163	-1.175310	Н	10.642174	2.908274	2.342740
С	6.004952	-0.160946	-0.372775	Н	9.878472	-0.721784	0.214870
С	7.374345	-0.125378	-0.614838	Н	1.020261	-3.702909	-0.432933
С	8.279113	0.716254	0.205195	Н	-1.383007	-3.286694	-0.057142
Ν	3.803865	-0.942371	-0.943701	Н	-0.731800	0.900455	-0.843854
С	2.927354	-2.000787	-1.079425	Н	1.613320	0.460383	-1.266101
С	1.494026	-1.657940	-0.846379	Н	12.499962	1.334581	1.790180
0	3.278046	-3.138369	-1.346902	Н	11.734207	0.023369	2.684202
С	7.868028	1.973523	0.652589	Н	12.150112	-0.203670	0.986110
С	8.710639	2.775446	1.418295	н	7.188679	4.228442	1.903606
С	9.977873	2.292031	1.741843	н	8.678952	4.395292	2.844633
С	10.415203	1.039254	1.314384	Н	8.633839	4.915045	1.161966
С	9.556260	0.262737	0.540069	Н	-2.680515	0.742840	-1.456669
С	0.620461	-2.698580	-0.510178	н	-8.243775	1.381008	0.437829
С	-0.719629	-2.465771	-0.291151	Н	-4.605763	2.192539	-1.691808
С	-1.246749	-1.162856	-0.419848	н	-8.162322	-2.947782	1.894703
С	-0.369977	-0.117148	-0.770588	Н	-8.093817	-2.322708	0.241470
С	0.973408	-0.367251	-0.978278	Н	-6.600851	-2.787628	1.076209
С	11.773631	0.522346	1.710160	н	-7.381444	-1.538325	3.842035
С	8.277126	4.149231	1.858783	Н	-6.722871	0.081706	3.577384
Ν	-2.602550	-0.942577	-0.209897	Н	-5.784735	-1.346174	3.103201
С	-3.217658	0.142135	-0.735931	н	-9.466098	-0.348156	1.038725
С	-4.560458	0.480159	-0.435259	Н	-9.429081	-1.028987	2.664788
С	-5.323543	-0.330533	0.484965	Н	-8.909348	0.636298	2.407455
С	-6.674162	-0.015204	0.811908	Н	-6.826068	4.772295	-2.668451
С	-7.222685	1.114029	0.210277	Н	-5.393931	4.304172	-1.752212
С	-6.508767	1.926446	-0.693744	Н	-5.954802	3.303332	-3.106666
С	-5.176267	1.584879	-1.001421	Н	-8.935265	3.534139	-2.542129
0	-4.749095	-1.371564	1.018408	Н	-9.154852	2.152700	-1.463273
С	-7.473368	-0.896344	1.774418	Н	-8.146501	1.991303	-2.908193
С	-7.579636	-2.327554	1.207029	Н	-6.782418	4.442453	0.398166
С	-6.788193	-0.925905	3.156415	Н	-8.139128	4.964207	-0.613550
С	-8.899877	-0.367826	1.974129	Н	-8.342273	3.614439	0.507390
С	-7.195310	3.140054	-1.309019	F	-3.615967	-3.130943	0.041724
С	-6.280303	3.917183	-2.262408				
С	-8.433070	2.669082	-2.099593	75			
С	-7.641276	4.091888	-0.180496	3-BF	2		
В	-3.404363	-1.929944	0.696213	С	8.483414	-0.344088	-1.319904
F	-2.743015	-2.106419	1.889455	С	7.654953	-1.047499	-2.176964

Ν	6.330003	-1.135329	-2.038248	Н	11.791313	1.010556	2.241752
С	5.794288	-0.522675	-0.988424	Н	10.405785	-0.279336	0.665481
С	6.539004	0.209260	-0.059922	Н	1.706432	-3.466054	-0.780528
С	7.915825	0.316179	-0.224780	Н	-0.719855	-3.176131	-0.429508
С	8.746083	1.089683	0.729774	Н	-0.198997	1.094202	-0.680633
Ν	4.400465	-0.576493	-0.827286	Н	2.172698	0.785237	-1.079042
С	3.569846	-1.634373	-1.141879	Н	-2.130285	0.939313	-1.375086
С	2.117572	-1.370875	-0.923096	Н	-7.724144	1.209742	0.521572
0	3.971710	-2.713722	-1.543737	Н	-4.100974	2.344247	-1.482688
С	8.266485	2.274326	1.296214	Н	-7.536935	-3.244646	1.506535
С	9.046119	2.999235	2.188413	Н	-7.480532	-2.444127	-0.069677
С	10.316955	2.549879	2.531158	Н	-5.978324	-2.960856	0.716617
С	10.803754	1.371852	1.974516	Н	-6.790898	-2.033918	3.597567
С	10.025689	0.648598	1.079662	Н	-6.170055	-0.380154	3.509771
С	1.273276	-2.473160	-0.746444	Н	-5.198695	-1.727038	2.888540
С	-0.079602	-2.312136	-0.541377	Н	-8.902562	-0.602395	0.931835
С	-0.648626	-1.020891	-0.523694	Н	-8.848757	-1.451335	2.476244
С	0.198035	0.087831	-0.719985	Н	-8.370415	0.244201	2.399054
С	1.554754	-0.091308	-0.914285	Н	-6.391571	4.945896	-2.204884
Ν	-2.015400	-0.871477	-0.322383	Н	-4.945248	4.421357	-1.343605
С	-2.658030	0.245638	-0.735272	Н	-5.487643	3.550112	-2.791864
С	-4.013618	0.508460	-0.417426	Н	-8.469812	3.658859	-2.199944
С	-4.759780	-0.420371	0.399345	Н	-8.658287	2.170898	-1.267359
С	-6.119113	-0.177229	0.751094	Н	-7.653711	2.177110	-2.724070
С	-6.695700	0.995961	0.272045	Н	-6.321706	4.302590	0.812785
С	-6.000965	1.919781	-0.534568	Н	-7.698006	4.894001	-0.132007
С	-4.657715	1.650003	-0.866725	Н	-7.860506	3.429734	0.842797
0	-4.161687	-1.501186	0.814629	F	-2.146563	-2.283882	1.619137
С	-6.896894	-1.176590	1.610212	F	-2.968759	-3.100543	-0.350992
С	-6.967975	-2.540598	0.891909				
С	-6.211757	-1.338129	2.983164				
С	-8.336071	-0.707535	1.861346				
С	-6.716966	3.175095	-1.018700				
С	-5.824230	4.067051	-1.889065				
С	-7.949183	2.763057	-1.849603				
С	-7.176462	3.993586	0.205087				
В	-2.798756	-1.981997	0.446160				
Н	9.547392	-0.289260	-1.516208				
Н	8.075581	-1.558218	-3.039722				
Н	6.046480	0.662147	0.793450				
Н	4.006282	0.137613	-0.233580				
Н	7.284517	2.643098	1.018592				
Н	8.661665	3.921104	2.612203				
Н	10.925590	3.115504	3.228831				