Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supplementary Information

Temperature-mediated phase control in high entropy transition metal oxides for hybrid supercapacitor

Arpeeta Hota,^{a,b} Jiban K. Das^{*a,b,c} Asim A. Mohammed,^{a,d} Prasanna K. Panda,^{a,b} Avijit Biswal,^{a,e} B. C. Tripathy^{*a,b}

a CSIR-Institute of Minerals and Material Technology (CSIR-IMMT), Bhubaneswar, 751013 India,

b Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India

c Department of Chemistry, N. B. C. College, Kendupadar, Ganjam-761122, India

d Physics Department, Faculty of Education, University of Zalingei, 62212, Sudan

e Bhadrak (Autonomous) College, Bhadrak, 756100, India

*Corresponding authors

E-mail: <u>bankim@immt.res.in</u> jibandas100@gmail.com

Molar Configurational Entropy Calculation

Here, x_i and x_j represent the mole fraction of elements present in the cation and anion sites, respectively, and R is the gas constant.

Fig. S1 FESEM images of HEO-110 (a, b).

Fig. S2 FESEM images of HEO-170 (a, b).

Fig. S3 Atomic percentages of each element in HEOs.

Fig. S4 N_2 adsorption-desorption isotherm of HEO-110, HEO-140 and HEO-170. The inset is the BET surface area of respective HEOs.

Fig. S5 Raman spectra of synthesized HEOs; (a) HEO-170, (b) HEO-140, (c) HEO-110.

Fig. S6 IR spectra of synthesized HEOs; HEO-170 (a), HEO-140 (b), HEO-110 (c).

Fig. S7 Schematic diagram for the electrochemical study of electrode materials.

Fig. S8 Equivalent circuit model of EIS fitting.

Fig. S9 The Bode plot of the temperature varied high entropy electrode material.

Fig. S10 A diagrammatic representation of the fabrication of the device.

Fig. S11 The stability data in terms of first 10 cycles and last 10 GCD cycles.

Table S1 Average elemental percentage of five metal species in HEO-110, HEO-140 andHEO-170 determined by ICP-OES.

Materials	Mn (Elemental %)	Fe (Elemental %)	Co (Elemental %)	Ni (Elemental %)	Cu (Elemental %)
HEO-110	7.6	7.9	7.6	8.2	8.9
HEO-140	5.8	8.1	5.8	7.0	7.2
HEO-170	6.9	6.8	6.4	7.1	7.8

 Table S2 Impedance parameter of the electrode material.

Electrode	Parameters				
Material	$R_{s}(\Omega)$	$R_{CT}(\Omega)$	C _L (F)		
HEO-110	0.57	0.63	0.0038		
HEO-140	0.49	0.56	0.0117		
HEO-170	1.16	1.73	0.0047		

Table S3 Comparison of energy parameters of HEO-140 electrode materials with otherreported HEOs.

High Entropy							
Oxides	Three-electrode		Two-electrode			Doforoncos	
[Method of synthesis]	Capacitance (Electrolyte)	Retention (Cycle)	Capacitance	Energy density & Power density	Retention (Cycle)	Kererences	
(FeCoCrMnNi)3O4 [PEG assisted HEO precursor followed by calcination (450 °C)]	204 F/g at 0.5 A/g (1M KOH)	60.4% (10,000)	149 F/g at 0.5 A/g	53 Whkg ⁻¹ & 400.8 Wkg ⁻¹	33% (10,000)	Ceramics International, 50 (7) (2024), 10292-10304	
(Alo.2Coo.2Cro.2Mn o.2Nio.2)3O4 [Reverse co-precipitation and calcination (550 °C)]	318 mAh/g at 1 A/g (3M KOH)					Chemistry Select, 7 (5) (2022),e20210 4015	
(CuNiFeMnCo)3O4 [a) Sol-gel and Combustion (350 °C). b) Reverse co- precipitation and calcination (350 °C)]	 a) 38.46F/g at 5 mV/s (2 M KOH) b) 34.24 F/g at 5 mV/s (2 M KOH) 	a) 90% (1,000) b) 99% (1,000)				Energy Storage, 6 (1) (2024), e538	
(Co0.2Cr0.2Fe0.2Mn0. 2Ni0.2)3O4 [Polyacrylamide gel method followed by calcination (800 °C)]	384 F/g at 1 A/g (6 M KOH)	60% (2000)	75 F/ g at 1 A/g	24 Whkg ⁻¹ & 746 Wkg ⁻¹	45.6% (5000)	Journal of Energy Storage, 73 (2023), 109182	
(FeCoCrMnMg)3O4 [Solid-state reaction (900 °C)]	193.7 F/g at 1 A/g (1 M KOH)	51% (1000)				Journal of Inorg. Materials, 36 (4) (2021), 425-430	
(CoCrFeMnNi) ₃ O ₄ [<i>Reverse</i> co-precipitation and calcination (750 °C)]	239 F/g at 0.5 A/g (2 M KOH)	51% (1000)				Journal of Energy Storage, 42 (2021), 103004	
(MnFeCoNiCu)3O4 [Hydrothermal synthesis (140 °C)]	216.2 F/g at 1 A/g (3 M KOH)		62 F/g at 1 A/g	25.17 Whkg ⁻¹ & 1006.8 Wkg ⁻¹	86.7% (5000)	This Work	