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Commercial BDC synthesis Bi-BDC process

Bi-BDC was prepared by one-pot hydrothermal method. In a typical experiment, 

1.25 g BDC and 2.43 g Bi(NO3)3·5H2O were added to 50 mL N, N-dimethylformamide 

(DMF) and stirred for 30 min until completely dissolved. The resulting suspension is 

then transferred to a 100 mL Teflon-lined stainless steel autoclave. Then the autoclave 

was sealed, heated at 150℃ for 12 h, cooled to room temperature, centrifuged to collect 

solid samples, and washed with DMF and methanol for 3 times, respectively. The solid 

samples were dried in a vacuum oven at 60℃ for 12 h to obtain Bi-BDC.1,2

Table S1. Commercial Bi-MOF economic accounting

Name Unit price dosage Total price ($) Total ($) Yield (%)
Bi(NO3)3·5H2O 0.72 $/g 2.43 g 1.75

BDC 0.21 $/g 1.25 g 0.26
DMF 5.79 $/L 95 mL 0.55

MeOH 2.76 $/L 60 mL 0.17
Electric charge 0.058 $/kWh 37.05 kWh 2.15

4.86 41.03

Table S2. Economic accounting of waste PET synthesis Bi-MOF

Name Unit price dosage Total price ($) Total ($) Yield (%)

Bi(NO3)3·5H2O 0.7 $/g 2.43 g 1.75
Waste PET 0.28 $/kg 1.44 g 0.0004

DMF 5.79 $/L 70 mL 0.41
MeOH 2.76 $/L 85 mL 0.23

Electric charge 0.058 $/kWh 37.17 kWh 2.15

4.54 42.12

Oven power: 1.55 kW; Vacuum drying chamber power: 1.45 kW; Centrifuge power: 

0.45 kW; Local electricity price: 0.058 $/kWh; Local waste PET price: 248.28-317.24 

$/ton, choose 275.86 $/ton calculation.

(1) The price of commercial synthetic Bi-BDC: 3.22 $/g.

(2) The price of PET synthesis Bi-BDC: 2.79 $/g.

A scale-up experiment (50 L high pressure reactor) was designed. The price of 

commercial BDC synthetic Bi-BDC: 3.22 $/g * 500 = 1610 $; The price of PET 

synthesis Bi-BDC: 2.79 $/g * 500 = 1395 $. Using the experimental method 500 times, 

the waste PET synthetic Bi-BDC is 215 $ cheaper than the commercial Bi-BDC.
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Synthesis of BiOBr

BiOBr was synthesized by simple hydrothermal method. First, 2 mmol 

Bi(NO3)3·5H2O was added to 50 mL of deionized water and stirred until dissolved. 

Then, 2 mmol NH4Br was added and stirred for 30 min, and the solution was transferred 

to 100 mL of polytetrafluoroethylene lined stainless steel autoclave and at 140℃ for 

12h. After cooling to room temperature, washing with water and anhydrous ethanol for 

3 times, and vacuum drying at 60℃ for 12h, white BiOBr was obtained.3

Figure S1. XRD patterns of BiOBr sample.

Figure S2. FT-IR spectra of BiOBr/Bi4O5Br2-1, BiOBr/Bi4O5Br2-2, BiOBr/Bi4O5Br2-3 and 
Bi4O5Br2-4.

Material characterization

The morphology of the catalyst was studied by field emission high-power scanning 

electron microscope (SEM) of SU8010 made by Hitachi. The phase structure of the 
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catalyst was analyzed by D8 Advance X-ray diffractometer (XRD) manufactured by 

Bruker, Germany. The test target was copper target, the scanning range was 5-90°, and 

the scanning speed was 10°/min. X-ray photoelectron spectroscopy (XPS) 

measurement uses monochromatic Mg Kα rays to emit x-rays (hv = 1,253.6 eV). 

Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images 

were obtained using a FEI-Tecnai F20 microscope (200 kV), respectively. 

Photoluminescence (PL) spectra were determined by a Hitachi F-4600 fluorescence 

spectrometer. Electron spin resonance (ESR) tests are performed on a JES-FA200 

spectrometer. Through the UV-4802S Ultraviolet–visible spectrometer (UV-vis) to 

study the visible light absorption of the catalyst, the test range is 200 - 1100 nm, with 

pure solid BaSO4 crystal measured curve as the baseline, The measured reflectance 

profiles were then converted into UV-visible diffuse reflectance absorption profiles by 

Kubellka-Munk formula. The specific surface area was calcu-lated using the Brunauer-

Emmett-Teller (BET) method. The mesopore size and distribution were calculated by 

the Barrett-Joyner-Halenda (BJH) method from desorption curves. The infrared spectra 

of the samples were obtained in the range of 400 - 4000 cm-1 using transmission mode 

on a Fourier-transform infrared spectrometer (FT-IR, Bruker EQUINOX - 55) to 

characterize the elements and functional groups.

Figure S3. SEM images of (a) Bi-BDC and (b) BiOBr/Bi4O5Br2-1.
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Figure S4. N2 adsorption-desorption isotherms of Bi-BDC, BiOBr/Bi4O5Br2-1 BiOBr/Bi4O5Br2-2 
and BiOBr/Bi4O5Br2-3 and corresponding pore size distribution curves.

Figure S5. (a) effect of solvent amount on benzyl alcohol oxidation; (b) Effects of different 
solvents on benzyl alcohol oxygen (H2O: 5 mL, CH3CN:5 mL, CH3CN/H2O: 2.5/2.5 mL).

Table S3 Comparison of catalytic performance of Bi-based photocatalysts for selective oxidation 
of BA to BAD.

Photocatalysts Conversion 

(%)

Selectivity

(%)

Concentrati

on (mmol)

Catalyst 

dosage

(mg)

Light

source

Time

(h)

Extra 

oxidant

Agent 

(O2)

Ref.

1.0%Au/3D-BiOCl 48 >99 2.5 50 Vis. light 8 [4]

Bi4Ti3O12 36 >99 0.1 10 Vis. light 5 + [5]

BiOBr-sMS 51 100 0.5 20 Vis. light 2 + [6]

0.8Br-BiOBr/Bi2WO6 40 >99 0.2 20 Vis. light 4 + [7]

Au@Ag/BiOCl–OV 92 >99 0.1 50 Vis. light 10 + [8]

3D-BiOCl@PDA 85 >99 0.5 50 Vis. light 2 + [9]

BiOBr/g-C3N4 64 65 0.2 50 Vis. light 3 + [10]

BiOI-CD-CdS 90 98 0.1 20 Vis. light 8 + [11]

BiOBr/Bi4O5Br2-2 93 95 0.1 10 Blue LED 3 + This 

work

https://www.x-mol.com/paperRedirect/1306780443759316992
https://www.x-mol.com/paperRedirect/1306780443759316992
https://www.x-mol.com/paperRedirect/1306780443759316992
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Figure S6. XRD patterns of BiOBr/Bi4O5Br2-2 before and after cycling and after regeneration.

Table S4. Comparison of catalytic performance of different photocatalysts for BA selective 
oxidation to BAD.

Photocatalysts
Conversion 

(%)

Selectivity

(%)

Cycle 

number

The conversion rate 

after the cycle (%)

Rate of 

decline (%)
Ref.

TiO2 81 99 5 51 30.2 [12]

SnS/g-C3N4 73 >99 4 73 0 [13]

Co1/TiO2 99 98 5 >90 9 [14]

40-CuBi2O4/WO3 55 99 5 47 7.8 [15]

ZnIn2S414 57 96 4 20 37 [16]

40% Ni(OH)2 on 

CdS-MoS2
94 99 5 89 5.5 [17]

N-CQDs/CdS 60 99 5 52 8.12 [18]

7.5% CS 

QDs/T3/TC QDs
98 99 5 98 0 [19]

BiOBr/Bi4O5Br2-2 93 95 5 75 18
This 

work

https://www.x-mol.com/paperRedirect/1703297719747760128
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