Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supplementary material

Reengineering waste PET bottles into construction BiOBr/Bi₄O₅Br₂ heterojunction materials for highly selective photocatalytic oxidation of benzyl alcohol

Xuehai Ren^a, Yubin Wang^{a,*}, Jiang Li^b, Kefu Wang^b, Yanan Niu^b, Jide Wang^{a,*} and Changyan Guo^{a,*}

Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, School of chemical engineering and technology, Xinjiang University, Urumqi, Xinjiang 830017,

P. R. China

* Correspondence to: gcyslw@xju.edu.cn (Changyan Guo); awangjd@sina.cn (Jide Wang); wybin@xju.edu.cn (Yubin Wang)

Commercial BDC synthesis Bi-BDC process

Bi-BDC was prepared by one-pot hydrothermal method. In a typical experiment, 1.25 g BDC and 2.43 g Bi(NO₃)₃·5H₂O were added to 50 mL N, N-dimethylformamide (DMF) and stirred for 30 min until completely dissolved. The resulting suspension is then transferred to a 100 mL Teflon-lined stainless steel autoclave. Then the autoclave was sealed, heated at 150°C for 12 h, cooled to room temperature, centrifuged to collect solid samples, and washed with DMF and methanol for 3 times, respectively. The solid samples were dried in a vacuum oven at 60°C for 12 h to obtain Bi-BDC.^{1,2}

Name	Unit price	dosage	Total price (\$)	Total (\$)	Yield (%)	
Bi(NO ₃) ₃ ·5H ₂ O	0.72 \$/g	2.43 g	1.75			
BDC	0.21 \$/g	1.25 g	0.26			
DMF	5.79 \$/L	95 mL	0.55	4.86	41.03	
MeOH	2.76 \$/L	60 mL	0.17			
Electric charge	0.058 \$/kWh	37.05 kWh	2.15			
Table S2. Economic accounting of waste PET synthesis Bi-MOF						

Table S1. Commercial Bi-MOF economic accounting

Name	Unit price	dosage	Total price (\$)	Total (\$)	Yield (%)
Bi(NO ₃) ₃ ·5H ₂ O	0.7 \$/g	2.43 g	1.75		
Waste PET	0.28 \$/kg	1.44 g	0.0004		
DMF	5.79 \$/L	70 mL	0.41	4.54	42.12
MeOH	2.76 \$/L	85 mL	0.23		
Electric charge	0.058 \$/kWh	37.17 kWh	2.15		

Oven power: 1.55 kW; Vacuum drying chamber power: 1.45 kW; Centrifuge power: 0.45 kW; Local electricity price: 0.058 \$/kWh; Local waste PET price: 248.28-317.24 \$/ton, choose 275.86 \$/ton calculation.

(1) The price of commercial synthetic Bi-BDC: 3.22 \$/g.

(2) The price of PET synthesis Bi-BDC: 2.79 \$/g.

A scale-up experiment (50 L high pressure reactor) was designed. The price of commercial BDC synthetic Bi-BDC: 3.22 /g 500 = 1610; The price of PET synthesis Bi-BDC: 2.79 /g 500 = 1395. Using the experimental method 500 times, the waste PET synthetic Bi-BDC is 215 \$ cheaper than the commercial Bi-BDC.

Synthesis of BiOBr

BiOBr was synthesized by simple hydrothermal method. First, 2 mmol $Bi(NO_3)_3 \cdot 5H_2O$ was added to 50 mL of deionized water and stirred until dissolved. Then, 2 mmol NH₄Br was added and stirred for 30 min, and the solution was transferred to 100 mL of polytetrafluoroethylene lined stainless steel autoclave and at 140°C for 12h. After cooling to room temperature, washing with water and anhydrous ethanol for 3 times, and vacuum drying at 60°C for 12h, white BiOBr was obtained.³

Figure S1. XRD patterns of BiOBr sample.

Figure S2. FT-IR spectra of BiOBr/Bi₄O₅Br₂-1, BiOBr/Bi₄O₅Br₂-2, BiOBr/Bi₄O₅Br₂-3 and Bi₄O₅Br₂-4.

Material characterization

The morphology of the catalyst was studied by field emission high-power scanning electron microscope (SEM) of SU8010 made by Hitachi. The phase structure of the

catalyst was analyzed by D8 Advance X-ray diffractometer (XRD) manufactured by Bruker, Germany. The test target was copper target, the scanning range was 5-90°, and the scanning speed was 10°/min. X-ray photoelectron spectroscopy (XPS) measurement uses monochromatic Mg K α rays to emit x-rays (hv = 1,253.6 eV). Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images were obtained using a FEI-Tecnai F20 microscope (200 kV), respectively. Photoluminescence (PL) spectra were determined by a Hitachi F-4600 fluorescence spectrometer. Electron spin resonance (ESR) tests are performed on a JES-FA200 spectrometer. Through the UV-4802S Ultraviolet-visible spectrometer (UV-vis) to study the visible light absorption of the catalyst, the test range is 200 - 1100 nm, with pure solid BaSO₄ crystal measured curve as the baseline, The measured reflectance profiles were then converted into UV-visible diffuse reflectance absorption profiles by Kubellka-Munk formula. The specific surface area was calcu-lated using the Brunauer-Emmett-Teller (BET) method. The mesopore size and distribution were calculated by the Barrett-Joyner-Halenda (BJH) method from desorption curves. The infrared spectra of the samples were obtained in the range of 400 - 4000 cm⁻¹ using transmission mode on a Fourier-transform infrared spectrometer (FT-IR, Bruker EQUINOX - 55) to characterize the elements and functional groups.

Figure S3. SEM images of (a) Bi-BDC and (b) BiOBr/Bi₄O₅Br₂-1.

Figure S4. N₂ adsorption-desorption isotherms of Bi-BDC, BiOBr/Bi₄O₅Br₂-1 BiOBr/Bi₄O₅Br₂-2 and BiOBr/Bi₄O₅Br₂-3 and corresponding pore size distribution curves.

Figure S5. (a) effect of solvent amount on benzyl alcohol oxidation; (b) Effects of different solvents on benzyl alcohol oxygen (H_2O : 5 mL, CH_3CN :5 mL, CH_3CN/H_2O : 2.5/2.5 mL).

 Table S3 Comparison of catalytic performance of Bi-based photocatalysts for selective oxidation of BA to BAD.

Photocatalysts	Conversion (%)	Selectivity (%)	Concentrati on (mmol)	Catalyst dosage (mg)	Light source	Time (h)	Extra oxidant Agent	Ref.
							(O ₂)	
1.0%Au/3D-BiOCl	48	>99	2.5	50	Vis. light	8		[4]
$Bi_4Ti_3O_{12}$	36	>99	0.1	10	Vis. light	5	+	[5]
BiOBr-sMS	51	100	0.5	20	Vis. light	2	+	[6]
0.8Br-BiOBr/Bi2WO6	40	>99	0.2	20	Vis. light	4	+	[7]
Au@Ag/BiOCl-OV	92	>99	0.1	50	Vis. light	10	+	[8]
3D-BiOCl@PDA	85	>99	0.5	50	Vis. light	2	+	[9]
BiOBr/g-C ₃ N ₄	64	65	0.2	50	Vis. light	3	+	[10]
BiOI-CD-CdS	90	98	0.1	20	Vis. light	8	+	[11]
BiOBr/Bi ₄ O ₅ Br ₂ -2	93	95	0.1	10	Blue LED	3	+	This
								work

Figure S6. XRD patterns of BiOBr/Bi₄O₅Br₂-2 before and after cycling and after regeneration.
 Table S4. Comparison of catalytic performance of different photocatalysts for BA selective oxidation to BAD.

	Conversion	Selectivity	Cycle The conversion rat		Rate of	Def
Photocatalysis	(%)	(%) number after the cycle (%)		decline (%)	Kel.	
TiO ₂	81	99	5	51	30.2	[12]
$SnS/g-C_3N_4$	73	>99	4	73	0	[13]
Co_1/TiO_2	99	98	5	>90	9	[14]
40-CuBi ₂ O ₄ /WO ₃	55	99	5	47	7.8	[15]
$ZnIn_2S_414$	57	96	4	20	37	[16]
40% Ni(OH) ₂ on	94	99	5	80	5.5	[17]
CdS-MoS ₂				89		
N-CQDs/CdS	60	99	5	52	8.12	[18]
7.5% CS	98	00	5	08	0	[10]
QDs/T ₃ /TC QDs		22		90	0	[19]
BiOBr/Bi ₄ O ₅ Br ₂ -2	93	95	5	75	18	This
				75		work

Notes and references

- 1 L. Cao, J. Huang, X. Wu, B. Ma, Q. Xu, Y. Zhong, Y. Wu, M. Sun and L. Yu, *Nanoscale*, 2023, 15, 19522–19532.
- 2 Y. Gao, F. Wang, J. Tang, C.-C. Wang, X.-H. Yi, Y. Wei, G. Liu, P. Wang, H. Fu, C. Zhao, X. Qiu and S. Yi, *Chem. Eng. J.*, 2024, **495**, 153651.
- 3 L. Jian, S. Li, H. Sun, Q. He, J. Chen, Y. Zhao and Y. Li, Colloid Surfaces A, 2022, 652, 129919.
- 4 D. Yao, K. Liang, G. Chen, Y. Qu, J. Liu, R. Chilivery, S. Li, M. Ji, Z. Li, Z. Zhong and Y. Song, J. Catal., 2023, 422, 56–68.
- 5 M. Shen, Y. Shi, Z. Wang, T. Wu, L. Hu and L. Wu, J. Colloid Interface Sci., 2022, 608, 2529–2538.
- 6 Z. Wang, C. Liu, F. Chen and R. Chen, Catalysts, 2023, 13, 958.
- 7 F. Wang, Y. Gu, Z. Yang, Y. Xie, J. Zhang, X. Shang, H. Zhao, Z. Zhang and X. Wang, *Appl. Catal. A: Gen.*, 2018, 567, 65–72.
- 8 H. An, C. Deng, Y. Sun, Z. Lv, L. Cao, S. Xiao, L. Zhao and Z. Yin, *CrystEngComm*, 2020, 22, 6603–6611.
- 9 R. Chilivery, R. Zhang, G. Chen, D. Yao, D. Fan, F. Lu and Y. Song, *Colloid Surface A*, 2023, 656, 130415.
- 10 W. Wang, X. Cong, X. Zhang, W. Xu, J. Diao, Y. Bao and F. Guo, J. Environ. Chem. Eng., 2025, 13, 115552.
- 11 N. Verma and R. Ananthakrishnan, *ChemPhotoChem*, 2021, 5, 545–558.
- 12 T. Hu, S. Zhu, Y. Yu, Z. Yue, Y. Wang, Y. Chang, W. Chen, L. Pei and J. Jia, *Mol. Catal.*, 2025, **575**, 114912.
- 13 Y. Li, C. Pan, G. Wang, Y. Leng, P. Jiang, Y. Dong and Y. Zhu, New J. Chem., 2021, 45, 6611– 6617.
- 14 T. Wang, W. Li, Z. Wang, N. Lu, T. Wang, K. Wang, S.-B. Ren, W. Chen and G. Huang, J. Alloys Compd., 2025, 1018, 179233.
- 15 Z. Zhang, S. Hao, X. Duan, T. Wang, H. Li, G. Fan, Y. Zhao and J. Li, *J. Alloys Compd.*, 2023, 968, 172209.
- 16 S. Ding, T. T. H. Duong, I. Medic, H. Lund, S. Bartling, N. Rockstroh, N. Steinfeldt and J. Strunk, J. Environ. Chem. Eng., 2024, 12, 113845.
- 17 C. Cui, X. Zhao, X. Su, W. Gao, J. Zhan, X. Zhang, G. Li, X. L. Zhang, Y. Sang and H. Liu, *J. Environ. Chem. Eng.*, 2021, **9**, 106416.
- 18 C. Liang, C. Wang, K. Xu, H. He, Q. Li, C. Yang and X. Gao, *Colloid Surface A*, 2022, 641, 128559.
- 19 Y. Liang, P. Chen, Q. Li, C. Hu, S. Yang, K. Wu, J. Wu, G. Meng, J. Liu, Y. Tai and Z. Liu, ACS Appl. Nano Mater., 2023, 6, 6161–6171.