Electronic Supplementary Information

A Zr/Ti-based bimetallic AO-UiO-66 framework for effective uptake of radioactive iodine

Dan Wang,^a Wenjing Cai,^a Qiuxiang Feng,^a Feng Cao,^a Qianli Zhang,^a Qiang Xu,^b Li Li,^{*c} and Jie Liu^{*a}

- ^a School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P.R. China.
- ^b School of Computer Science and Information Engineering, Changzhou Institute of Technology, Changzhou 213032, P.R. China.
- ^c School of Automotive and Traffic Engineering, Jiangsu University of Technology, Changzhou 213001, P.R. China.

* Corresponding author.

Email: liliorigin@jsut.edu.cn, jliu@mail.usts.edu.cn

General procedures

The crystal structures of the target materials were characterized using a Rigaku Ultima IV Xray diffractometer (Rigaku Corporation, Japan) operated at 40 kV and 40 mA with a scanning angle range of 5-40° and a step size of 0.15°/s. The morphologies of the samples were examined using a scanning electron microscope (SEM, S4800, Hitachi, Japan). Specific surface area and pore size distribution were determined using an ASAP 2020M instrument (Micromeritics Instruments, USA). Thermal stability was evaluated using a Pyris 1 TGA thermogravimetric analyzer (PerkinElmer, USA). Characteristic functional groups and molecular structures were identified using a Spectrum Two FTIR spectrometer (PerkinElmer, USA) within the wavenumber range of 400-2000 cm⁻¹. The chemical states and elemental compositions were analyzed using a Thermo Scientific K-Alpha Xray photoelectron spectrometer (Thermo Fisher Scientific, UK). UV-visible diffuse reflectance spectra were recorded using a UV-3600 UV-visible near-infrared spectrophotometer (Shimadzu, Japan). The concentration of the I₂ solution was measured using an HB-7 UV spectrophotometer (Beijing Haotianhui Instrument Co., China).

Experimental procedures

Scheme S1. Synthetic scheme of H₂L ligand.

Synthesis of 2,5-dihydroxyterephthalate (S1)

2,5-dihydroxyterephthalic acid (DTHA) (1.005 g, 5 mmol), absolute ethanol (50 mL) and a star bar were added into a 150 mL two-necked flask charged with a condenser. And then, 1 mL of concentrated sulfuric acid were added into the mixture drop by drop with stirring. The reaction mixture was stirred and refluxed with stirring at 90 °C for 48 h. After the reaction was completed, the solution was cooled to room temperature and a large amount of DI water was added into the mixture. Yellow-green crystals S1 (1.1753g, 91% yield) were obtained by suction filtration and washed with plenty of water and dried in oven under 80 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.14 (s, 2H, ArOH), 7.48 (s, 2H, ArCH), 4.40-4.44 (m, 4H, CH₂), 1.41-1.44 (m, 6H, CH₃). ¹³C NMR (100 MHz,

Synthesis of Ethyl 2,5-bis (allyloxy) terephthalate (S2)

S1 (0.5120 g, 2 mmol) was added into a 150 mL two-neck flask charged with a magnetic stirring bar and a condenser. The flask was evacuated and purged with nitrogen for three times, and about 45 mL of N₂ bubbled acetone was added to the flask under an atmosphere of N₂. Then K₂CO₃ (1.22 g, 8.7 mmol) and KI (0.071 g, 4.2 mmol) were added into the mixture under N₂ atmosphere, finally, a solution of allyl bromide (0.73 g, 6 mmol) in acetone (5 mL) was injected under N₂ protection. The resultant reaction mixture was stirred for 24 h at room temperature, the solid were removed by filtration when the reaction was completed, and the filtrate was collected and distilled through rotary evaporator. S2 (yellow-brown solid, 0.6740 g) was obtained after the purification by column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (s, 2H, ArCH), 6.02-6.08 (m, 2H, CH), 5.47-5.49 (m, 2H, CH), 5.28-5.30 (m, 2H, CH), 5.59 (m, 4H, CH₂), 4.36-4.40 (m, 4H, CH₂), 1.38-1.40 (m, 6H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 165.67, 151.49, 132.72, 124.87, 117.65, 117.28, 70.52, 61.44, 14.30.

Synthesis of 2,5-bis (allyloxy)terephthalic acid (H₂L)

S2 (0.6680 g, 2 mmol) was added into a 100 mL two-necked flask charged with a stir bar and a condenser, NaOH aqueous solution (3 M, 25 mL, bubbled with N₂) and methanol (15 mL, bubbled with N₂) were added into the flask under N₂ protection. The reaction mixture was then stirred at 70 °C for 24 h. The mixture was cooled down to room temperature and 30 mL of DI water was added into the flask under N₂, HCl (36 wt%) was then added dropwise with stirring until the pH of the solution was lower than 2.0. A yellow solid product was formed and collected by filtration and washed with plenty of DI water. The ligand H₂L (0.4884 g, 87.8%) was obtained after dried in an oven at 60 °C under vacuum. ¹H NMR (400 MHz, DMSO-d₆) δ 13.02 (s, 2H, COOH), 7.30 (s, 2H, ArCH), 5.97-6.04 (m, 2H, CH), 5.41-5.45 (m, 2H, CH), 5.22-5.25 (m, 2H, CH), 4.68 (m, 4H, CH₂). ¹³C NMR (100 MHz, DMSO-d₆) δ 167.19, 150.50, 133.91, 125.78, 117.41, 116.26, 69.81.

Iodine adsorption kinetics in cyclohexane

The absorbance value of the original solution was normalized to 100%. The removal efficiency (R) of iodine were calculated as follows:

$$R = \frac{(C_0 - C_t)}{C_0} \times 100\%$$
 (1)

where C₀ and C_t represent the initial concentration and concentration at time, respectively. Sorption kinetics of iodine in AO-UiO-66-ZrTi11 were fitted to a Pseudo-first-order and pseudo-second-order kinetics model, respectively:

$$ln\left(q_e - q_t\right) = lnq_e - k_1 t \tag{2}$$

$$\frac{t}{q_t} = \frac{1}{h} + \frac{t}{q_e} \tag{3}$$

where q_t , q_e represent the amounts of adsorbate at certain time t or at equilibrium time, h is the initial adsorption rate, $h = k_2 q_e^2$, and k_1 and k_2 is the rate constant (see Table S1).

Iodine adsorption isotherm

The linear equation of the Langmuir isotherm model is expressed as follow:

$$\frac{C_e}{q_e} = \frac{1}{q_m K_L} + \frac{C_e}{q_m} \tag{4}$$

Where q_m is the maximum sorption capacity corresponding to complete monolayer coverage (mg g⁻¹) and K_L is a constant indirectly related to sorption capacity and energy of sorption (L mg⁻¹), which characterizes the affinity of the adsorbate with the adsorbent. The linearized plot was obtained when we plotted C_e/q_e against C_e and q_m and K_L could be calculated from the slope and intercept.

The linear equation of Freundlich isotherm model can be expressed by:

$$lnq_e = lnK_F + \frac{1}{n}lnC_e \tag{5}$$

Where K_F and n are the Freundlich constants related to the sorption capacity and the sorption intensity, respectively. The linear plot was obtained by plotting lnq_e against lnC_e , and the values of K_F and n were calculated from the slope and intercept of the straight line (see Table S2).

Additional Figures

Fig. S1 PXRD patterns (A) of AO-UiO-66 (a), AO-UiO-66-ZrTi31 (b), AO-UiO-66-ZrTi11 (c), AO-UiO-66-ZrTi13, (d) and Ti-MOFs (e). XPS survey spectra (B) of AO-UiO-66-ZrTi31 (a), AO-UiO-66-ZrTi11 (b), AO-UiO-66-ZrTi13 (c).

Fig. S2 N_2 sorption isotherms of AO-UiO-66-ZrTi11 (a) and AO-UiO-66 (b).

Fig. S3 TGA curves of AO-UiO-66-ZrTi11 (a) and AO-UiO-66 (b).

Fig. S4 (A) Trend plots of AO-UiO-66-ZrTi11 (a), AO-UiO-66-ZrTi31 (b) and AO-UiO-66 (c) and photographs of (B) AO-UiO-66-ZrTi11, (C) AO-UiO-66-ZrTi31 and (D) AO-UiO-66 for the adsorption of I_2 in cyclohexane solution.

Fig. S5 Adsorption capacity (a) and removal efficiency (b) of I_2 in cyclohexane solution with different dosages of AO-UiO66-ZrTi11.

Fig.S6 Comparison of the iodine uptake in cyclohexane solution by different MOF adsorbents.

Fig. S7 (A) UV-Vis spectra of iodine in ethanol. (B) Desorption kinetic curve of I₂@AO-UiO-66-ZrTi11 in ethanol solution. (C) pseudo-first-order kinetics fitting curve. (D) pseudo-secondorder kinetics fitting curve.

Fig. S8 (A) Removal efficiency of I_2 in cyclohexane solution in cycle experiment. (B) The PXRD pattern of retrieved AO-UiO-66-ZrTi11 after the I_2 desorption of $I_2@AO$ -UiO-66-ZrTi11.

Additional tables

Simple	Content W (%)		
	Zr	Ti	
AO-UiO-66	23.5	-	
AO-UiO-66-ZrTi31	19.35	2.1	
AO-UiO-66-ZrTi11	12.05	6.89	

 Table S1 ICP date of AO-UiO-66-ZrTi11.

Table S2 Kinetic fitting parameters of the pseudo-first-order model and the pseudo-second-ordermodel for iodine adsorption by AO-UiO-66-ZrTi11.

pseudo-first-order kinetics fitti				pseudo-second-order kinetics fittings		
Sample	q _e	k ₁	R ²	q_{e}	k ₂	R ²
	(mg g⁻¹)	(min⁻¹)		(mg g ⁻¹)	(g mg ⁻¹ min ⁻¹)	
AO-UiO-66-ZrTi11	184.07	0.13492	0.901	384.62	0.0043	0.999

Table S3 Fitting results of the sorption isotherm according to the Langmuir and Freundlich equations.

	Langmuir adsorption isotherm			Freundlich adsorption isother		
Sample	q _m	KL	D ²	K _F	2	D ²
	(mg g⁻¹)	(L mg⁻¹)	ĸ	(mg g ⁻¹)(L mg ⁻¹) ^{1/n}	п	ĸ
AO-UiO-66-ZrTi11	1133	0.0103	0.998	298	5.73	0.995

Table S4 Comparison of adsorption capacity of I_2 in cyclohexane solution by different MOF adsorbents at room temperature.

Matarial	I ₂ conc. in cyclohexane	Adsorbent dosage	Deferences
	(mg g ⁻¹)	(g L⁻¹)	References
ZBPU-I ₂	1260.7	-	1
UiO-66-PYDC	1250	0.6	2
AO-UiO-66-ZrTi11	1084.4	1	This work
ZBPU-I	896.3	-	1
FJI-H39	884.96	2	3
FJI-H40	719.42	2	3
ZBPU	329.25	-	1
Th-BPYDC	312.18	2	4
Th-SINAP-10	292.4	-	5
CAU-1	290	-	6
MIL-101(Cr)-SO₃Ag	244.2	1	7
Th-UiO-66-(NH ₂) ₂	241.5	2.5	8
Th-UiO-67	196.7	2	4
Mn–Ni-MOF-74	163	1	9
MOF-5	115	5	10
Th-UiO-66-Cl	107.5	2.5	8
Mn–Co-MOF-74	54.23	1	9
Mn–Zn-MOF-74	42.23	1	9

A de sub susta	Temp.	adsorption capacity	Adsorption time	References
Adsorbents	(°C)	(g g ⁻¹)	(h)	
HIAM-4014	80	2.680	5	11
AO-UiO-66-ZrTi11	80	2.463	4.7	This work
HBS-W8	-	2.320	84	12
MOF-808	80	2.180	72	13
NH ₂ -MIL-101-on-NH ₂ -UiO-66	80	1.930	4	14
HBS-W9	-	1.920	84	12
MIL-125	-	1.900	120	15
MIL-125-NH ₂	-	1.600	120	15
NU-1000	80	1.450	72	13
Zn/Cd@JLUN-4	80	1.400	-	16
UiO-66-NH-T.D	75	1.330	2.5	17
CAU-1(AI)-NH ₂	-	1.300	72	18
Th-SINAP-17	75	1.255	-	19
UiO-66-NH-B.D	75	1.170	2.5	17
CZ-3	75	1.150	5	20
Ln-MOF	75	1.138	60	21
Th-SINAP-19	75	1.002	-	19
Th-UiO-66-(NH ₂) ₂	75	0.969	9	8
MOF-303	80	0.956	12	22
MOF-867	80	0.880	72	13
UiO-66	80	0.660	72	13
Zn-MOF	70	0.660	30	23
Th-SINAP-16	75	0.552	-	19
UiO-67	80	0.530	72	13

 Table S5 Comparison of capture performance for iodine vapor by different MOF adsorbents.

Table S6 Kinetic fitting parameters of the pseudo-first-order model and the pseudo-second-ordermodel for iodine desorption by AO-UiO-66-ZrTi11.

	pseudo-first-order	kinetics fittings	pseudo-second-order kinetics fittings		
Sample	k ₁	R ²	k ₂	R ²	
	(min⁻¹)		(g mg⁻¹ min⁻¹)		
AO-UiO-66-ZrTi11	0.07683	0.993	0.05407	0.995	

References

- V. Valverde, C. Gallegos, F. Ajila, A. Kumar, A. A. A.-S. Dawood, M. M. Abid, F. S. Hashim, S. F. Abdulameer, F. A. Rasen, H. A. Abbas, A. Alawadi, A. Ihsan, Iodo-functionalization of Zr-UiO-67 metal-organic frameworks: An efficient strategy for I₂ uptake and selective detection of I⁻, *J. Mol. Struct.*, **2024**, 1304, 137641.
- 2 Z. Wang, Y. Huang, J. Yang, Y. Li, Q. Zhuang, J. Gu, The water-based synthesis of chemically stable Zrbased MOFs using pyridine-containing ligands and their exceptionally high adsorption capacity for iodine, *Dalton Trans.*, **2017**, 46, 7412-7420.
- 3 C. Xiao, J. Tian, F. Jiang, D. Yuan, Q. Chen, M. Hong, Optimizing Iodine Enrichment through Induced -Fit Transformations in a Flexible Ag(I)-Organic Framework: From Accelerated Adsorption Kinetics to Record - High Storage Density, *Small*, **2024**, 20, 2311181.
- 4 X. Yang, X. Liu, Y. Liu, X.-F. Wang, Z. Chen, X. Wang, Optimizing iodine capture performance by metalorganic framework containing with bipyridine units, *Front. Chem. Sci. Eng.*, **2023**, 17, 395-403.
- 5 Z.-J. Li, Y. Ju, B. Yu, X. Wu, H. Lu, Y. Li, J. Zhou, X. Guo, Z.-H. Zhang, J. Lin, J.-Q. Wang, S. Wang, Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption, *Chem. Commun.*, **2020**, 56, 6715-6718.
- 6 C. Falaise, C. Volkringer, J. Facqueur, T. Bousquet, L. Gasnot, T. Loiseau, Capture of iodine in highly stable metal–organic frameworks: a systematic study, *Chem. Commun.*, **2013**, 49, 10320-10322.
- 7 X. Zhao, X. Han, Z. Li, H. Huang, D. Liu, C. Zhong, Enhanced removal of iodide from water induced by a metal-incorporated porous metal–organic framework, *Appl. Surf. Sci.*, **2015**, 351, 760-764.
- 8 Z.-J. Li, Y. Ju, H. Lu, X. Wu, X. Yu, Y. Li, X. Wu, Z.-H. Zhang, J. Lin, Y. Qian, M.-Y. He, J.-Q. Wang, Boosting the lodine Adsorption and Radioresistance of Th-UiO-66 MOFs via Aromatic Substitution, *Chem. Eur. J.*, **2021**, 27, 1286-1291.
- 9 W.-Z. Li, F.-Y. Guo, J. Li, X.-S. Zhang, Y. Liu, J. Luan, Fabrication of bimetallic MOF-74 derived materials for high-efficiency adsorption of iodine, *Dalton Trans.*, **2024**, 53, 13370-13383.
- 10 R.-L. Yu, Q.-F. Li, T. Zhang, Z.-L. Li, L.-Z. Xia, Zn, O Co-adsorption based on MOF-5 for efficient capture of radioactive iodine, *Process Saf. Environ. Protect.*, **2023**, 174, 770-777.
- H.-L. Xia, K. Zhou, L. Yu, H. Wang, X.-Y. Liu, J. Li, A Zirconium–Organic Framework Constructed from Saddle-Shaped Tetratopic Carboxylate for High-Rate and -Efficiency Iodine Capture, *Inorg. Chem.*, 2022, 61, 17109-17114.
- 12 J. Tang, S. Zhou, M. Huang, Z. Liang, S. Su, Y. Wen, Q.-L. Zhu, X. Wu, Two isomeric metal–organic frameworks bearing stilbene moieties for highly volatile iodine uptake, *Inorg. Chem. Front.*, **2022**, 9, 3436-3443.
- 13 P. Chen, X. He, M. Pang, X. Dong, S. Zhao, W. Zhang, Iodine Capture Using Zr-Based Metal–Organic Frameworks (Zr-MOFs): Adsorption Performance and Mechanism, ACS Appl. Mater. Interfaces, 2020, 12, 20429-20439.
- 14 L. Liu, L. Chen, K. Thummavichai, Z. Ye, Y. Wang, T. Fujita, X. Wang, Amino-functionalized MOF-on-MOF architectural nanocomplexes composed for radioactive-iodine efficient adsorption, *Chem. Eng. J.*, **2023**, 474, 145858.
- P. H. M. Andrade, J. Dhainaut, C. Volkringer, T. Loiseau, A. Moncomble, M. Hureau, A. Moissette, Stability of Iodine Species Trapped in Titanium-Based MOFs: MIL-125 and MIL-125_NH₂, *Small*, **2024**, 20, 2400265.
- 16 R.-L. Yu, Q.-F. Li, Z.-L. Li, L.-Z. Xia, Precise regulation of active sites of MOFs for capture of iodine, *J. Environ. Chem. Eng.*, **2022**, 10, 108779.

- 17 M. Zahid, D. Zhang, X. Xu, M. Pan, M. H. ul haq, A. T. Reda, W. Xu, Barbituric and thiobarbituric acidbased UiO-66-NH₂ adsorbents for iodine gas capture: Characterization, efficiency and mechanisms, *J. Hazard. Mater.*, **2021**, 416, 125835.
- 18 P. H. M. Andrade, H. Ahouari, C. Volkringer, T. Loiseau, H. Vezin, M. Hureau, A. Moissette, Electron-Donor Functional Groups, Band Gap Tailoring, and Efficient Charge Separation: Three Keys To Improve the Gaseous Iodine Uptake in MOF Materials, ACS Appl. Mater. Interfaces, 2023, 15, 31032-31048.
- 19 Y. Ju, Z.-J. Li, H. Lu, Z. Zhou, Y. Li, X.-L. Wu, X. Guo, Y. Qian, Z.-H. Zhang, J. Lin, J.-Q. Wang, M.-Y. He, Interpenetration Control in Thorium Metal–Organic Frameworks: Structural Complexity toward Iodine Adsorption, *Inorg. Chem.*, **2021**, 60, 5617-5626.
- 20 R.-L. Yu, M.-Q. Sun, X.-Y. Wang, D.-T. Li, Z.-L. Li, L.-Z. Xia, C@MOF composite material for rapid and efficient capture of gaseous iodine, *Chem. Eng. J.*, **2024**, 489, 151423.
- 21 Y.-Z. Shi, Q.-H. Hu, X. Gao, L. Zhang, R.-P. Liang, J.-D. Qiu, A flexible indium-based metal-organic framework with ultrahigh adsorption capacity for iodine removal from seawater, *Sep. Purif. Technol.*, 2023, 312, 123366.
- 22 M. Li, X. Wang, J. Zhang, Y. Gao, W. Zhang, Cu-loaded MOF-303 for iodine adsorption: The roles of Cu species and pyrazole ligands, *Appl. Surf. Sci.*, **2023**, 619, 156819.
- 23 A. Mandal, A. Adhikary, A. Sarkar, D. Das, Naked Eye Cd²⁺ Ion Detection and Reversible Iodine Uptake by a Three-Dimensional Pillared-Layered Zn-MOF, *Inorg. Chem.*, **2020**, 59, 17758-17765.