Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting Information

Theoretical analysis of characteristic in BeMgCu₄ cluster and its implication for CO₂ activation

Lifang Yan^a, Xingman Liu^{a,*}, Yue Huang^a, Xinluo Wu^a, Xiaomeng Wang^{a,*} and Zhongmin Su^{b, c,*}

Address:

^a School of Chemistry and Chemical Engineering, School of Physics, Ningxia University, Yinchuan 750021, China

^b State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China

^c Institute of Functional Material Chemistry, Faculty of Chemistry & National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, China

*Corresponding Authors:

E-mail address:

liuxm2020@nxu.edu.cn (X. M. Liu); xiaomengwang@nxu.edu.cn; zmsu@nenu.edu.cn (Z. M. Su);

Table of Contents

SI1 Structures and relative energies of BeMgCu₄ in Fig. S1.

SI2-3 The AIM topological analysis mapping of C_{4v} -BeMgCu₄ in Fig. S2 and the important front molecular orbital composition of C_{4v} -BeMgCu₄ in Fig. S3-S5.

SI4 Schematic of the AdNDP patterns for C_{4v} -BeMgCu₄ in Fig. S6 and the dominant FMO correlation diagram in C_{4v} -BeMgCu₄ between BeMg and Cu₄ fragments in Fig. S7.

SI5 Schematic representation of the important bonding NOCV pair orbitals in Fig. S8 of BeMgCu₄.

SI6 The occupied molecular orbitals diagram bonded mainly by the d orbitals of four copper atoms in **Fig. S9**.

SI7 The carbon end of carbon dioxide attacks the eight sites of the BeMgCu₄ cluster in a parallel manner in **Fig. S10**.

SI8 The oxygen end of carbon dioxide attacks the eight sites of the BeMgCu₄ cluster in a vertical manner in **Fig. S11**.

SI9 The main frontier molecular orbitals in **Fig. S12** and Schematic representation of the important bonding NOCV pair orbitals in **Fig. S13** of BeMgCu₄-CO₂.

SI10 The dominant FMO correlation diagram in MgCaCu₄ between MgCa and Cu₄ fragments in **Fig. S14**.

SI11 The carbon end of carbon dioxide attacks the eight sites of the MgCaCu₄ cluster in a parallel manner in **Fig. S15**.

SI12-14 Detailed orbital component analysis results of C_{4v} -BeMgCu₄ in Table S1-S3.

SI15 Atomic charges of some small molecules calculated by different methods at B3LYP/6-311G(d) in **Table S4**.

SI16 The BeMgCu₄-CO₂ structures before and after optimization in **Table S5**.

SI17 The properties of CO₂ in Table S6 and Cartesian coordinates of BeMgCu₄ in Table S7.

Fig. S1 The relative energies of the different isomers of the BeMgCu₄ clusters. The structures were searched by the ABCluster program, followed by rigorous geometry optimization using Gaussian 09 at the B3LYP/6-31G(d) level. The point group is given under each structure, and the superscripts indicate the spin multiplicities. The energy values (eV) shown in blue were calculated at the CCSD/6-311G(d) level, demonstrating strong agreement with DFT results. These calculations identified the singlet-state C_{4v} -BeMgCu₄ as the global minimum structure.

Fig. S2 The AIM topological analysis mapping of C_{4v} -BeMgCu₄. The purple, orange, yellow, and green points represent the positions of the nuclear critical point (NCP), the bond critical point (BCP), the ring critical point (RCP), and the cage critical point (CCP), respectively. D_{br} indicates the distance between the BCP and its nearest RCPs.

	Cu4	Be	Mg	Sum (BeMg)
HOMO	25.8%	26.2%	48.0%	74.2%
HOMO-1	53.5%	37.8%	8.7%	46.5%
HOMO-2	58.4%	26.7%	14.9%	41.6%
HOMO-17	83.5%	14.3%	2.2%	16.5%

Fig. S3 Important front molecular orbital and composition of C_{4v} -BeMgCu₄ at the CCSD/6-311G(d)/LANL2DZ level (isovalue = 0.04). 6-311G(d) for Be and Mg, while LANL2DZ for Cu.

Cu4 Be Mg Sum (BeMg) HOMO 31.2% 43.1% 25.7% 68.8% HOMO-1 65.7% 28.6% 5.7% 34.3% HOMO-17 54.5% 34.8% 10.7% 45.5%

Fig. S4 Important front molecular orbital and composition of C_{4v} -BeMgCu₄ at the B3LYP/6-311++G(d, p) level (isovalue = 0.04).

Fig. S5 Important front molecular orbitals and composition of C_{4v} -BeMgCu₄ at the B3LYP/def2-TZVP level (isovalue = 0.04).

Fig. S6 Schematic representation of the AdNDP patterns for C_{4v} -BeMgCu₄ at the CCSD/6-311G(d)/LANL2DZ level (isovalue = 0.04).

Fig. S7 The dominant FMO correlation diagram of C_{4v} -BeMgCu₄ between BeMg and Cu₄ fragments calculated at the B3LYP/def2-TZVP level. The horizontal dashed and solid lines represent virtual and occupied molecular orbitals, respectively (the orbital energies are also given in brackets, unit: eV). It can be observed that the π orbitals of Be-Mg (LUMO+1) contribute 23% to the Be-Mg delocalized double π interaction (HOMO-1) in C_{4v}-BeMgCu₄.

Fig. S8 Schematic representation of the important bonding NOCV pair orbitals in BeMgCu₄ based on two fragments Cu₄ and BeMg at the B3LYP/6-311G(d) level (charge flow is blue \rightarrow green. Isosurface value = 0.005 a.u.. Energy values are given in kcal/mol.)

Fig. S9 The occupied molecular orbitals diagram bonded mainly by the d orbitals of four copper atoms at the CCSD/6-311G(d)/LANL2DZ level (isovalue = 0.02). The contribution of d orbitals from each copper atom to the corresponding bonding molecular orbitals was determined by aggregating the basis functions.

Fig. S10 The carbon end of CO_2 attacks the eight sites of the BeMgCu₄ cluster in a parallel manner. The bond length, bond angle, and bond level data of CO_2 was calculated at the B3LYP/6-31G(d)/LANL2DZ level using the DFT method. The zero-point vibration corrected energies (kJ/mol) of each structure are given in the square brackets. The energies (kJ/mol) in blue were calculated at B3LYP/def2-TZVP level, which isconsistent with the results of another method calculation at B3LYP/6-31G(d)/LANL2DZ level.

Fig. S11 The oxygen end of CO_2 attacks the eight sites of the BeMgCu₄ cluster in a vertical manner. The bond length, bond angle, and bond level data of CO_2 was calculated at the B3LYP/6-31G(d)/LANL2DZ level using the DFT method. The zero-point vibration corrected energies (kJ/mol) of each structure are given in the square brackets.

Fig. S12 The main frontier molecular orbitals of $BeMgCu_4-CO_2$ at the CCSD/6-311G(d)/LANL2DZ level. Isosurface value = 0.02 a.u..

Fig. S13 Schematic representation of the important bonding NOCV pair orbitals in BeMgCu₄-CO₂ based on two fragments BeMgCu₄ and CO₂ at the B3LYP/6-31G(d) level (charge flow is blue \rightarrow pink. Isosurface value = 0.005 a.u. (1), 0.0005 a.u. (2-5). Energy values are given in kcal/mol.)

Fig. S14 The dominant FMO correlation diagram of C_{4v} -MgCaCu₄ between MgCa and Cu₄ fragments calculated at the B3LYP/6-311G(d) level. The horizontal dashed and solid lines represent virtual and occupied molecular orbitals, respectively (the orbital energies are also given in brackets, unit: eV).

Fig. S15 The carbon end of CO_2 attacks the eight sites of the MgCaCu₄ cluster in a parallel manner. The bond length, bond angle, and bond level data of CO_2 was calculated at the B3LYP/6-31G(d)/LANL2DZ level using the DFT method. The zero-point vibration corrected energies (kJ/mol) of each structure are given in the square brackets.

Table S1 The crucial occupied molecular orbitals composition of C_{4v} -BeMgCu₄. The coefficient of each orbital is given by thecontribution from the fragments. Calculations at CCSD/6-311G(d)/LANL2DZ level.

Diagram	BC				Cu Ba
Energy/eV	-5.92	-6.	.41	-11.60	-14.44
Component	Cu4©~4p 22.5% Cu4©~3d 3.1% Be©~2s 19.6% Be©~2p 6.2% Mg©~3s 44.2% Mg©~3p 2.5%	Cu4©~4p 11.2% Cu4©~3d 2.1% Cu4©~4s 37.5% Be©~2p 37.7% Mg©~3p 8.5%	Cu4©~4p 11.2% Cu4©~3d 2.1% Cu4©~4s 37.5% Be©~2p 37.7% Mg©~3p 8.5%	Cu4©~4s 25.2% Cu4©~4p 9.2% Cu4©~3d 21.7% Be©~2s 22.6% Be©~2p 3.3% Mg©~3s 11.7% Mg©~3p 2.3%	Cu4©~4s 25.2% Cu4©~4p 9.2% Cu4©~3d 21.7% Be©~2s 22.6% Be©~2p 3.3% Mg©~3s 11.7% Mg©~3p 2.3%

Table S2 The crucial occupied molecular orbitals composition of C_{4v} -BeMgCu₄. The coefficient of each orbital is given by thecontribution from the fragments. Calculations at B3LYP/6-311++G(d, p) level.

Diagram	Cu Be			
Energy/eV	-5.07	-5.	.53	-10.49
Component	$\begin{array}{c} Cu_4 @~4p \ 21.4\% \\ Cu_4 @~3d \ 9.2\% \\ Be @~2s \ 18.2\% \\ Be @~2p \ 7.2\% \\ Mg @~3s \ 39.5\% \\ Mg @~3p \ 2.4\% \end{array}$	Cu ₄ ©~4s 40.0% Cu ₄ ©~4p 7.5% Cu ₄ ©~3d 15.4% Be©~2p 28.6% Mg©~3p 5.6%	Cu ₄ ©~4s 40.0% Cu ₄ ©~4p 7.5% Cu ₄ ©~3d 15.4% Be©~2p 28.6% Mg©~3p 5.6%	$\begin{array}{c} Cu_4 @~4s\ 21.2\% \\ Cu_4 @~4p\ 8.6\% \\ Cu_4 @~3d\ 21.9\% \\ Be @~2s\ 25.6\% \\ Be @~2p\ 8.1\% \\ Mg @~3s\ 6.9\% \\ Mg @~3p\ 3.0\% \end{array}$

Table S3 The crucial occupied molecular orbitals composition of C_{4v} -BeMgCu₄. The coefficient of each orbital is given by thecontribution from the fragments. Calculations at B3LYP/def2-TZVP(d, p) level.

Diagram				
Energy/eV	-5.07	-5.	.53	-10.49
Component	$\begin{array}{c} Cu_4 @\sim\!\!\!\!\!/4p \ 7.2\% \\ Cu_4 @\sim\!\!\!\!/3d \ 9.3\% \\ Be @\sim\!\!\!\!/2s \ 21.0\% \\ Be @\sim\!\!\!\!/2p \ 10.7\% \\ Mg @\sim\!\!\!\!/3s \ 46.3\% \\ Mg @\sim\!\!\!\!3p \ 4.1\% \end{array}$	Cu ₄ ©~4s 45.0% Cu ₄ ©~4p 3.8% Cu ₄ ©~3d 15.6% Be©~2p 25.8% Mg©~3p 8.4%	$\begin{array}{c} Cu_4 @~4s \ 45.0\% \\ Cu_4 @~4p \ 3.8\% \\ Cu_4 @~3d \ 15.6\% \\ Be @~2p \ 25.8\% \\ Mg @~3p \ 8.4\% \end{array}$	$\begin{array}{c} Cu_4 @~4s\ 23.0\% \\ Cu_4 @~4p\ 3.4\% \\ Cu_4 @~3d\ 21.8\% \\ Be @~2s\ 29.1\% \\ Be @~2p\ 7.5\% \\ Mg @~3s\ 7.9\% \\ Mg @~3p\ 3.3\% \end{array}$

Molecular	Atom	Mulliken	Hirshfeld	ADCH	NPA	MK	AIM
C _{4v} -BeMgCu ₄	Be	-1.222	-0.208	-0.385	-1.259	-0.338	1.209
_	Mg	-0.907	-0.010	-0.094	-0.338	-0.089	0.730
	Cu	0.532	0.055	0.120	0.099	0.107	-0.485
C _{4v} -BeMgLi ₄	Be	-0.101	-0.370	-0.764	-1.933	-0.766	-2.996
	Mg	-0.165	-0.098	-0.334	-0.092	-0.341	-0.134
	Li	0.067	0.117	0.275	0.507	0.277	0.783
C4v-MgCaCu4	Mg	-0.943	0.014	0.112	-0.507	0.151	0.834
	Ca	-0.376	0.147	0.316	0.105	0.503	0.796
	Cu	0.330	-0.040	-0.082	0.100	-0.164	-0.407
C4v-MgCaLi4	Mg	-0.171	-0.145	-0.280	-0.995	-0.209	-2.598
	Ca	0.190	-0.029	-0.096	0.252	0.097	-0.186
	Li	-0.005	0.044	0.094	0.186	0.028	0.696
D4h-Be2Cu4	Be	-1.277	-0.224	-0.500	-1.084	-0.488	1.084
	Cu	0.639	0.112	0.250	0.542	0.245	-0.542
D _{4h} -Be ₂ Li ₄	Be	-0.186	-0.321	-0.691	-1.201	-0.708	-1.282
	Li	0.093	0.160	0.346	0.600	0.354	0.810
D_{4h} - Mg_2Cu_4	Mg	-0.186	0.042	0.052	-0.393	0.091	0.881
	Cu	0.408	-0.021	0.026	0.197	-0.046	-0.440
D_{4h} - Mg_2Li_4	Mg	-0.114	-0.127	-0.292	-0.587	-0.342	-0.481
	Li	0.057	0.063	0.146	0.294	0.171	0.740
D4h-Ca2Cu4	Ca	-0.476	0.112	0.252	0.021	0.518	0.724
	Cu	0.238	-0.056	-0.126	-0.010	0.259	-0.362
C _{2v} -Ca ₂ Li ₄	Ca	0.268	-0.031	-0.005	0.111	0.097	-0.103
	Li	-0.134	0.015	0.003	-0.055	-0.048	0.292

Table S4 Atomic charges of some small molecules calculated by different methods at B3LYP/6-311G(d).

Table S5 The BeMgCu₄-CO₂ structures. CO₂ was selected as the probe molecule to attack the eight different sites of octahedral cluster in both vertical (O-terminus) and parallel (C-terminus). The sixteen initial structures were optimized at the B3LYP/6-31G(d)/LANL2DZ level using DFT method.

	Parallel (C-terminus)		Vertical (O-terminus)
Site	Initial structure	Optimized structure	Initial structure	Optimized structure
1				
2				
3				
4		······································		

0.4	Parallel	(C-terminus)	Vertical (O-terminus)		
Site	Initial structure	Optimized structure	Initial structure	Optimized structure	
5					
6				-	
7					
8				* **	

Property	Bond Angle	$R_{C-O}(Å)$	WBI _{C-O}	NPA (e)	SVF _{C-O} (cm ⁻¹)	FC _{C-O}
^a CO ₂	180.00°	1.16	1.75	C: 1.01 O: -0.51	2454.81	16.67
^b CO ₂	131.39°	C-O(1): 1.31 C-O(2): 1.20	C-O(1): 1.09 C-O(2): 1.60	C: 0.58 O(1): -0.76 O(2): -0.53	1810.59	C-O(1): 5.43 C-O(2): 12.05

Table S6 The properties of CO_2 were calculated at CCSD/6-311G(d)/LANL2DZ level of theory.

Superscripts are employed to differentiate CO_2 molecules pre- and post-activation. Notations: a – unactivated CO_2 , b – activated CO_2 at site 1.

Table S7 Cartesian coordinates of C_{4v} -BeMgCu₄ obtained at the CCSD/6-311G(d)/LANL2DZ level.

Coordinate (Å) ¹ BeMgCu ₄						
Cu	1.95380100	0.00000000	-0.14463000			
Cu	0.00000000	1.95380100	-0.14463000			
Cu	0.00000000	-1.95380100	-0.14463000			
Cu	-1.95380100	0.00000000	-0.14463000			
Be	0.00000000	0.00000000	-1.08286900			
Mg	0.00000000	0.00000000	1.76207000			