Supporting Information

Organic-inorganic hybrid nanoflower of copper phosphate coated with tetra imidazolyl-phenanthroline derivatized calix[4]arene: Synthesis, characterization and its application as peroxidase mimic catalyst

Subrata Kumar Dinda,^a Sivaiah Areti^b and Chebrolu Pulla Rao*c

^aPost Graduate Teacher (Chemistry), District CM School of Excellence Nadia Hindu School, Lohardaga, Jharkhand – 835302.

^bDepartment of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat - Surat-Dumas road, Surat-395007, India. Email: <u>areti@chem.svnit.ac.in</u>

^cDepartment of Chemistry, School of Engineering and Applied Sciences, SRM University AP, Neerukonda (P.O.), Guntur (dist), Andhra Pradesh – 522240, India.

Formerly at IIT Bombay followed by IIT Tirupati

*Author to whom the correspondence should be addressed: cprao@iittp.ac.in

Content	Page no:
S1. Characterization Data of P_2	03
S2. Characterization Data of P_3	05
S3. Characterization Data of L	07
S4. UV-Visible spectra of peroxidase mimetic activity of L with different substat	ies 09
S5. ESI-MS Spectrum of the oxidized product of TMB	10
S6. ESI-MS Spectrum of the oxidized product of OPD	11
S7. ESI-MS Spectrum of oxidized product of guaiacol.	12
S8 . Table S1: Data pertinent to the literature reported copper phosphate	
nanoflower based peroxidase mimics	13
S9 . UV-Visible spectra of peroxidase mimetic activity of different substates	
with copper precursors	14

S1. Characterization Data of P₂

The P_2 has been synthesized according to the literature reported procedure.¹[C. D. Gutsche, J. A. Levine, P. K. Sujeeth, Functionalized Calixarenes: The Claisen Rearrangement Route, *J. Org. Chem.* 1985, **50**, 5802–5806] ¹H NMR (**400** MHz, CDCl₃) $\delta_{(ppm)}$: 10.2 (s, 4H), 7.06 (d, *J*= 7.6 Hz, 8H), 6.74 (t, *J* = 7.6 Hz, 4H), 4.27 (br s, 4H), 3.55 (br s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ : 148.9, 129.1, 128.4, 122.4, 31.8; ESI-MS (HRMS): Chemical formula C₂₈H₂₄O₄, [M+K]⁺ calculated m/z at 463.1303, observed m/z at 463.1306.

Fig. S1. Spectral data of P_2 : (a) ¹H NMR in CDCl₃, (b) ¹³C NMR in CDCl₃ and (c) ESI-MS (HRMS)

S2. Characterization Data of P₃

The **P**₃ has been synthesized according to the literature reported procedure.² [K. Samanta, and C. P. Rao, A Bifunctional Thioether Linked Coumarin Appended Calix[4]arene Acquires Selectivity Toward Cu²⁺ Sensing on Going from Solution to SAM on Gold, *ACS Appl. Mater*. *Interfaces*, 2016, **8**, 3135] ¹H NMR (400 MHz, DMSO-d₆) δ (ppm): 9.6 (s, 4H), 7.65 (s, 8H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 190.6, 160.5, 130.7, 129.7, 127.9 and 31.2; ESI-MS (HRMS): Chemical formula C₃₂H₂₄O₈ [M+H]⁺ calculated m/z at 537.1540, observed m/z at 537.1544.

Fig. S2. Spectral data of P_3 : (a) ¹H NMR in CDCl₃, (b) ¹³C NMR in CDCl₃ and (c) ESI-MS (HRMS)

S3. Characterization Data of L

Fig. S3. Spectral data for L (a) ¹H NMR in DMSO-d₆ (500 MHz); (b) ¹³C NMR in DMSO-d₆ (125 MHz) and (c) ESI-MS.

S4. UV-Visible spectra of peroxidase mimetic activity of L with different substates

Fig. S4. UV-Visible spectra of peroxidase mimetic activity of (a) TMB, (b) OPD and (c) Guaiacol (0.2 mM) in the presence of H_2O_2 (2 mM) and L (0.1 g/ml) at different time intervals in PBS buffer (10 mM, pH 5.0).

S5. ESI-MS Spectrum of oxidized product of TMB

Fig. S5. ESI-MS Spectrum of oxidized product of TMB

S6. ESI-MS Spectrum of oxidized product of OPD

Fig. S6. ESI-MS Spectrum of oxidized product of OPD

S7. ESI-MS Spectrum of oxidized product of Guaiacol

Fig. S7. ESI-MS Spectrum of oxidized product of guaiacol

S8. Table S1: Data pertinent to the literature reported copper phosphate nanoflower based

peroxidase mimics

	Oxidation of 3,3,5,5-tetramethylbenzidine (TMB)						
Sr. no	Composite bybrid	Size (µm)	Reaction conditions	Reaction time (min)	Reference		
1	ChOx@HRP hybrid nanoflowers	20	PBS buffer, pH=7.4, 37°C	10	<i>J. Nanosci. Nanotechnol.</i> 2018, 18 , 6555–6561		
2	AuNPs@PMo12 Nanohybrid	19.8	рН=3, 37°С	5	<i>RSC Adv.</i> , 2020, 10 , 35949–35956		
3	GOx@Mn ₃ (PO ₄) ₂ hybrid	NA	20 mM KMnO4 & 1mM H2O2,	30	<i>RSC Adv.</i> , 2019, 9 , 1889–1894		
4	Calix[4]arene conjugate @CuPNF	8-12	PBS (10 mM, pH 5.0), 0.1mM H ₂ O _{2,} 37°C	10	Present study		
	Oxidation of ortho-phenylenediamine (OPD)						
5	Pyrenyl@CuPNF	93	H ₂ O ₂ =50 mM, PBS at pH=7.4, 37°C	30	<i>J. Mater. Chem. B</i> , 2021, 9 , 3523–3532		
6	POM-Calix hybrid	40	100mM H ₂ O ₂ , 37°C	15	<i>Inorg. Chim. Acta</i> , 2018, 483 , 337–342		
7	RuNPs		3mM H ₂ O ₂ , PBS=7.4, 37°C	35	<i>RSC Adv.</i> , 2017, 7 ,52210–52217		
8	Calix[4]arene conjugate @CuPNF	8-12	PBS (10 mM, pH 5.0), 0.1mM H ₂ O _{2,} 37°C	25	Present study		
	Oxidation of Guaiacol						
9	LPO–Copper phosphate HNFs	15	22 mM H2O2, PBS (pH 4, 0.1 M KH ₂ PO ₄ , 25 °C)	60	Int. J. Biol. Macromol., 2016, 84 , 402–409		
10	HRP–Cu ²⁺ hybrid nanoflowers	10	22 mM H2O2, pH 6.8, 0.1 M KH ₂ PO4,25°C	45	Dalton Trans., 2015, 44 , 13845–13852		
11	Amino acid-copper hybrid nanoflowers	09	22 mM H2O2, PBS, pH 7, 35°C	130	<i>Chem Biodivers</i> . 2023, 20(8) , e202300743		
12	Calix[4]arene conjugate @CuPNF	8-12 μm	PBS (10 mM, pH 5.0), 0.1mM H ₂ O _{2,} 37°C	50 min	Present study		

S9. UV-Visible spectra of peroxidase mimetic activity of different substates with copper precursors

Fig. S9. UV-Visible spectra of peroxidase mimetic activity of (a) TMB, (b) OPD and (c) Guaiacol with $CuSO_4$ and (d) TMB (e) OPD and (f) Guaiacol with $Cu(acac)_2$ in the presence of H_2O_2 at different time intervals in PBS buffer (10 mM, pH 5.0).