Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

1 Supplemental file for:

2 Adsorption of trace perfluorooctanoic acid on corn stover-based lignin amine by

- 3 synergy of electrostatic and hvdrophobic interactions
- 4 Baoyuan Shi^{a, b, c}, Jun Dong^{a, b, c, *}, Yunhao Li^{a, b, c}, Weihong Zhang^{a, b, c}, Yongxin Li^{a, b, c}
- 5 a Key Lab of Groundwater Resources and Environment Ministry of Education, Jilin University,
- 6 China
- 7 b Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University,
- 8 China
- 9 c National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control
- 10 and Remediation Technology, Jilin University, China
- 11 Corresponding Author: Jun Dong. Email: dongjun@jlu.edu.cn
- 12

13 SUPPLEMENTARY NOTES

14 Supplementary Note 1 | The formulas of removal rate and adsorption capacity of15 PFOA by CSLA:

The removal rate of CSLA towards PFOA (R, %) and the mass of PFOA adsorbed by unit mass of CSLA at desired time (q_t, mg/g) and equilibration time (q_e, mg/g) were calculated according to the following equations (1–3):

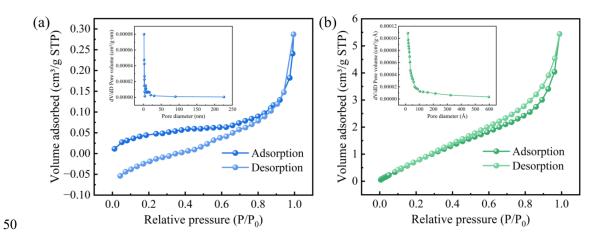
19
$$P(\%) = \frac{C_0 - C_e}{C_0} \times 100\%$$
 (1)

20
$$q_t = \frac{(C_0 - C_t)V}{m}$$
(2)

21
$$q_e = \frac{(C_0 - C_e)V}{m}$$
(3)

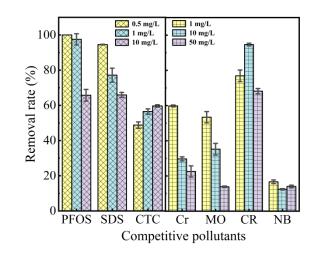
Where C₀, C_t and C_e (mg/L) denote the initial, immediate and final PFOA concentrations, respectively; V (L) stands for the volume of the PFOA solution used, and m (mg) presents the weight of CSLA.

25


26 Supplementary Note 2 | Measurement and analysis:

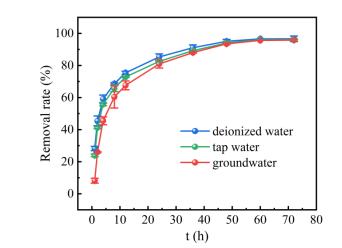
This study used scanning electron microscopy (SEM, Hitachi Regulus 8100, 27 Japan) and energy dispersive X-Ray spectrometer (EDS, Ultim Max 65, UK) to 28 observe the surface morphology and element weight ratio of CSLA; the element 29 content analysis and valence state calibration of CSLA were performed by X-ray 30 photoelectron spectroscopy (XPS, Thermo fisher Nexsa G2, USA); fourier transform 31 infrared spectroscopy (FTIR, Thermo Fisher Scientific Nicolet iS5, USA) was used to 32 evaluate types of surface functional groups and chemical bonds of CSLA in KBr flake; 33 the surface potentials were determined by a Nano particle potential analyzer 34 (Zetasizer Nano S90, Malvern, UK); thermal stability of CSLA was measured using 35 thermal gravimetric analyzer (TGA, TA TGA 550, USA); the surface area and 36 porosity analyzer (BET, Micromeritics 3FLEX, USA) was used to gauge the specific 37 surface area of CSLA. 38

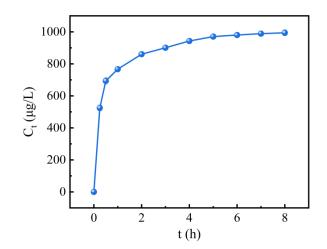
The concentration of PFOA in the solution was measured by High-Performance Liquid Chromatography Mass Spectrometry (U3000/TSQ quantum). The instrument test conditions of Liquid Chromatography are as follows: the mobile phase is 5 mmol/L ammonium acetate aqueous solution and acetonitrile (30:70, V/V); the injection volume is 1 μ L; the column temperature is 40°C; the flow rate is 0.15


44 mL/min. The mass spectrometer used the anion mode HESI ion source. The scanning
45 conditions were: the ion source temperature was 350°C; the ion source voltage was
46 3000 V, the ion transport tube temperature was 350°C; the sheath gas pressure was 35
47 bar; the auxiliary gas pressure was 10 bar.

49 SUPPLEMENTARY FIGURES

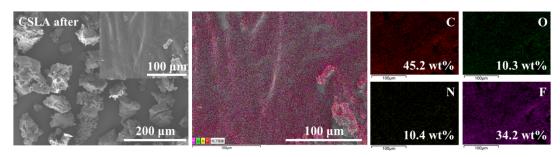
51 Fig. S1. The N_2 adsorption-desorption isotherms of (a) lignin and (b) CSLA.


52

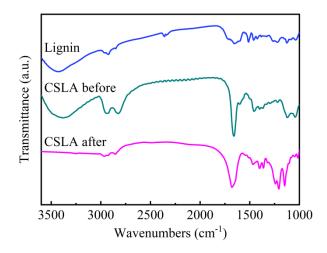

53

54 Fig. S2. Removal rate of competitive pollutants by CSLA

55



57 Fig. S3. The adsorption of PFOA on CSLA in actual water.



59 Fig. S4. Desorption efficiency experiment.

The react conditions of the adsorption test are: the initial concentration of PFOA 60 was 1000 µg/L, the volume of PFOA solution was 50 mL, and the addition amount of 61 CSLA was 5 mg. In order to obtain the desorption efficiency of PFOA by the mixed 62 solution of 1% NaCl and 70% methanol, the adsorbed and dried CSLA was added to 63 50 mL mixed solution for desorption. The concentration of PFOA in the mixed 64 solution was monitored during the desorption process, and it was found that the 65 desorption equilibrium was reached after 6 h. The concentration of PFOA in the 66 mixed solution at desorption equilibrium was 994.05 µg/L, and the desorption rate 67 reached 99.41%, indicating that the mixed solution of 1% NaCl and 70% methanol 68 desorption effect PFOA. 69 has а good on

- 70
- 71 Fig. S5. The SEM-EDS images of PFOA adsorbed CSLA.

74 Fig. S6. Complete FTIR spectra of lignin and CSLA before and after adsorption of

75 PFOA.

76 SUPPLEMENTARY TABLES

Model Nonlinear equation		Parameters			
Pseudo-first-order	$q_{t} = q_{e}(1 - e^{-k_{1}t})$	q_e and $q_t (mg/g)$ are the adsorbed amount			
		at an equilibrium concentration (Ce,			
		mg/g) and a predetermined time (t, h) $k_{\rm l}$			
		(h ⁻¹) is the rate constants.			
Pseudo-second-order	$q_t = \frac{k_2 q_e^2 t}{1 + k_2 q_e^2 t}$	$k_2 \; (g/(mg {\cdot} h))$ is the rate constants for the			
		pseudo-second order.			
Elovich	$q_t = \frac{1}{\beta} \ln(1 + \alpha \beta t)$	α (mg/(g·h)) is the initial rate constant, β			
		(mg/g) is the desorption constant.			
Intra-particle diffusion	$\boldsymbol{q}_t = \boldsymbol{K}_t t^{1/2} + \boldsymbol{C}_t$	$K_i~(mg/(g{\cdot}h^{0.5}))$ is the adsorption rate			
		constants of intra-particle diffusion			
		model and C_i is the constant for film			
		thickness of the intra-particle diffusion			
		model.			

77 Table S1. Adsorption kinetic models.

Model	Nonlinear equation	Parameters		
Langmuir	$q_{\rm max} K_L C_e$	q _{max} (mg/g) is the maximum adsorption		
	$q_e = rac{q_{\max} \mathcal{K}_L C_e}{1 + \mathcal{K}_L C_e}$	capacity of the adsorbent, $q_e (mg/g)$ is the adsorption capacity at equilibrium, C		
		(mg/L) is the adsorbate concentration		
		equilibrium, K_L (L/mg) is the constant		
		for the affinity between the adsorbate an		
		the adsorbent.		
Freundlich	$q_e = K_F C_e^{1/n}$	$K_F~(mg/g){\cdot}(L/mg)^{1/n}$ is the Freundlic		
	'e r e	constant, n is a dimensionless Freundlic		
		intensity parameter.		
		R is the universal gas constant (8.31		
	$\Delta G^{\circ} = -RT \ln \frac{q_e}{C_e}$	J/mol·K), T is the absolute temperature		
	$\Delta G^{0} = \Delta H^{0} - T \Delta S^{0}$	(K), q _e (mg/g) is the adsorption capaci		
		at equilibrium, and C_e (mg/L) is the		
		adsorbate concentration at equilibriur		
		The values of ΔS^0 and ΔH^0 were obtained		
		from the intercept and slope of the lin		
		that was plotted by ΔG^0 versus T.		

79 Table S2. Adsorption isotherm models and adsorption thermodynamics equation.

Parameters	PFOA solution (µg/L)				
	250	500	1000		
Pseudo first-order					
$q_e (mg/g)$	4.74	9.49	19.33		
k_1 (h ⁻¹)	0.87	0.63	0.16		
R ²	0.9175	0.9648	0.9387		
Pseudo second-order					
q _e (mg/g)	4.91	9.91	20.16		
$k_1 (h^{-1})$	0.32	0.10	0.01		
R ²	0.9902	0.9764	0.9891		
Elovich					
$\alpha (mg/(g \cdot h))$	10191.80	873.96	56.68		
β	2.93	1.11	0.39		
R ²	0.8154	0.7870	0.9627		
Intra-particle diffusio	n				
$K_1\left(mg/(g{\cdot}h^{1/2})\right)$	1.04	3.55	6.29		
$C_1 (mg/g)$	2.26	1.42	-0.56		
R ²	0.8976	0.9751	0.9862		
$K_2 (mg/(g \cdot h^{1/2}))$	0.23	0.43	1.34		
$C_2 (mg/g)$	3.81	7.67	10.04		
R ²	0.9490	0.9905	0.9794		
$K_3 (mg/(g \cdot h^{1/2}))$	0.03	0.09	0.17		
C ₃ (mg/g)	4.60	8.98	17.87		
R ²	0.9652	0.9830	0.9945		

81 Table S3. The parameters of adsorption kinetics models and intra-particle diffusion model.

	Т	283 K	293 K	303 K
Langmuir	q _{max} (mg/g)	426.87	654.11	1018.10
	K _L (L/mg)	0.07	0.10	0.22
	R ²	0.9970	0.9942	0.9911
Freundlich	$K_F(mg/g)(L/mg)^{1/n}$	51.10	95.78	219.86
	n	1.93	1.99	2.02
	R ²	0.9941	0.9940	0.9881
Thermodynamics	ΔG^0 (kJ/mol)	-10.56	-15.08	-18.12
	ΔH^0 (kJ/mol)		96.22	
	$\Delta S^0 \left(kJ/(mol \cdot K) \right)$		0.38	

83 Table S4. The parameters of adsorption isotherm models and adsorption thermodynamics.

85 Table S5. Concentrations of contaminants in CSLA leaching solution.

Samples	Mass concentration / $mg \cdot L^{-1}$	Standard / mg·L ⁻¹		
Cl-	0.05224	50 ^a		
Formaldehyde	0.07903	0.9 ^b		

86 a Category I standard of *Standard for groundwater quality* (GB/T 14848-2017)

87 b Standard limits for specific projects of centralized drinking water surface water sources of

88 Environmental quality standards for surface water (GB 3838-2002)

Material	C_0	Т	pН	R	q_e^a	q_{max}^{b}	Reference
	$(\mu g/L)$	(K)		(%)	(mg/g)	(mg/g)	
calcium-based MOF	10	-	7.0	72.00	0.0038	0.061	1
MWNTs	100	297	6.5	65.00	0.00094	0.0035	2
Alumina	100	297	4.3	-	0.0049	0.014	3
Carbon nanotube sponge	100	297	-	75.00	1.52	-	4
Boehmite	200	297	7.0	-	0.027	0.19	5
AE-APTMS@ gFe ₂ O ₃	1000	297	-	65.00	3.30	12.06	6
MOF (In ₂ O ₃ -400)	20000	297	4.6	-	25.45	-	7
CS_MBC	50000	297	3.5	63.42	158.55	517.00	8
PEI-PVC NF	100000	297	7.0	51.20	175.01	223.36	9
	250			99.03	4.95		
CSLA	500	293	6.0	99.31	9.93	654.11	This study
	1000			98.45	19.69		

90 Table S6. Comparison of PFOA adsorption on different adsorbents.

91 a The q_e is the saturated adsorption capacity obtained from the adsorption kinetics

92 experiment.

93 b The q_{max} is the maximum adsorption capacity of the material obtained by Langmuir

94 model fitting in the adsorption isotherm experiment.

95 References:

- 96 1 F. F. Sukatis, M. R. Razak, L. J. Looi, H. N. Lim, M. B. Abdul Rahman and A. Z.
- 97 Aris, *Microporous Mesoporous Mat.*, 2024, **380**, 113316.
- 98 2 X. N. Li, S. Chen, X. Quan and Y. B. Zhang, *Environ. Sci. Technol.*, 2011, 45,
 99 8498-8505.
- 100 3 F. Wang and K. Shih, *Water Res.*, 2011, **45**, 2925-2930.
- 101 4 A. Xue, Z. W. Yuan, Y. Sun, A. Y. Cao and H. Z. Zhao, Chemosphere, 2015, 141,
- 102 120-126.
- 103 5 F. Wang, C. Liu and K. Shih, *Chemosphere*, 2012, **89**, 1009-1014.
- 104 6 D. Y. Xing, Y. Chen, J. Zhu and T. Liu, Chemosphere, 2020, 251, 126384.
- 105 7 X. Gao, J. Chen, H. A. Che, Y. H. Ao and P. F. Wang, ACS ES&T Wat., 2022, 2,
- 106 1344-1352.
- 107 8 B. Saawarn, B. Mahanty and S. Hait, *Environ. Pollut.*, 2025, 368, 125734.
- 108 9 S. B. Kang, Z. Wang, W. Zhang, K.-Y. Kim and S. W. Won, Sep. Purif. Technol.,
- 109 2023, **326**, 124853.
- 110