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Figure S1. (a) TEM image with size distribution (inset), (b) HRTEM image, (c) XRD 
pattern of GQDs.



Figure S2. (a) XPS survey spectrum, (b) C 1s, (c) N 1s, and (d) O 1s spectra of GQDs.



Figure S3. FT-IR spectra of GQDs and GQD-based 2D textile.



Figure S4. SEM images of the self-assembly of GQDs (a) at pH=1, (b) at pH=6.

Figure S5. SEM image of 2D textile with addition of Fe ions.



Figure S6. SEM image of (a) FeNC-700 and (b) FeNC-900, TEM image of (c) FeNC-
700 and (d) FeNC-900.



Figure S7. Cyclic voltammetry (CV) curves of FeNC-700 and FeNC-900 catalysts in 
Ar- (dotted lines) and O2 (solid lines)-saturated 0.1 M KOH electrolyte.



Figure S8. ORR performance comparison with Fe-based catalysts.



Figure S9. CVs for (a) FeNC-700, (b) FeNC-800, (c) FeNC-900, and (d) Pt/C at scan 
rates from 5 to 25 mV s-1. (e) Calculated Cdl values.



Figure S10. Nyquist plots of FeNC-700, FeNC-800 and FeNC-900 in 1.0 M KOH 
electrolyte.



Figure S11. (a) The survey XPS spectra, (b) Fe 2p, (c) N 1s spectra, and (e) analysis of 

various N-types content of FeNC-800a, FeNC-800, and FeNC-800c.



Figure S12. Raman patterns of FeNC-800a, FeNC-800 and FeNC-800c.



Figure S13. LSV curves of FeNC-800a, FeNC-800 and FeNC-800c.



Figure S14. IT curve of FeNC-800.



Figure S15. (a) TEM image, (b) XPS survey spectrum, high resolution XPS spectrum 
of (c) Fe 2p, (d) N 1s, and (e) analysis diagram of various N-type content of the post-
FeNC-800 catalyst after electrochemical operation.



Figure S16. (a) Tafel slopes of FeNC-800. (b) OER stability test of FeNC-800.

https://www.sciencedirect.com/topics/physics-and-astronomy/oxygen-evolution-reaction


Table S1. The content of C, N, O and Fe in FeNC catalysts from XPS analysis.

Catalysts C (at%) N (at%) O (at%) Fe (at%)

FeNC-700 81.95 4.16 11.2 2.69

FeNC-800 74 4.79 17.34 3.86

FeNC-900 69.81 4.65 21.2 4.33



Table S2. A comparison table of the ORR activity between this work and recently 
reported Fe-based catalysts in alkaline medium.

Materials E1/2 (V) in 0.1 
M KOH

Eonset (V) in 0.1 
M KOH

Reference
s

FeNC-800 0.85 1.02 This work

Fe3C-FeSA@3DCN 0.835 0.926 [1]

FNSNC73-800 0.79 - [2]

Fe2-N/CNTs-850 0.846 0.972 [3]

Fe/Ni (1:3)-NG 0.842 - [4]

Fe SA/NPCs 0.83 0.89 [5]

Fe@MET-M 0.895 - [6]

PA‐CoFe@NPC 0.85 0.95 [7]

Fe/N-G#4 0.852 1.01 [8]

Fe-KJB-3-60A 0.90 - [9]

Fe-Nx ISAs/GHSs 0.87 1.05 [10]

FeS/FeNSC 0.91 - [11]

Fe-SAC/NC 0.84 0.95 [12]

AC-N-Fe 0.76 0.87 [13]

Fe-N-C/HPC-NH3 0.803 0.945 [14]

Fe-N-C/MXene 0.84 0.92 [15]

FeMnac/Mn-N4C 0.90 1.00 [16]

FePNC 0.90 - [17]
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