Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting Information

A T-shaped Cyanidometal-bridged Tetranuclear Fe₃Ru Complex With

Oxidation-driven Intramolecular Charge Transfer Between Metal Centres

Hao Wang^{abc}, Xiao-Lin Liu^b, Han Liu^b, Xin-Tao Wu^b and Tian-Lu Sheng^{*abc}

^aCollege of Chemistry, Fuzhou University, Fuzhou 350108, China.

^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of

Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, China.

^cFujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.

*Corresponding author e-mail: tsheng@fjirsm.ac.cn

Table of Content

Table S1. Crystallographic data of 1 ⁺
Table S2. Selected bond lengths (Å) and angles (deg.) for 1 ⁺ .
Figure S1. Cyclic voltammogram of 1^+ recorded in a 1:1 mixture of CH_2Cl_2 and CH_3CN / 0.1 M
[TBA]PF ₆ at scan rate of 50, 100, 150, 200 and 250 mV/s5
Figure S2. Peak distribution of the second redox peak of the DPV spectra
Table S3. Redox potential according to the DPV sepctra for complexes 1^+ in a 1:1 mixture of CH_2Cl_2
and CH ₃ CN / 0.1 M [TBA]PF ₆ (vs. Cp ₂ Fe)5
Figure S3. Liquid FTIR spectra of $1 - 1^{3+}$ in CH ₂ Cl ₂
Figure S4. UV-vis-NIR spectra of $1 - 1^{3+}$ in CH ₂ Cl ₂
Figure S5. Gaussian peak fitting of the second absorption band in the vis-NIR region of 1 ³⁺ 7
Table S4 . Selected absorption bands of $1 - 1^{3+}$ in CH_2Cl_2 7
Table S5. Calculated electronic absorption of $1 - 1^{3+}$ in CH_2CI_2
Figure S6. ¹ H NMR of [Ru(DMPZ) ₄ Cl ₂] in CDCl ₃
Table S6. Optimized Cartesian Coordinates of 1.
Table S7. Optimized Cartesian Coordinates of 1+
Table S8. Optimized Cartesian Coordinates of 1 ²⁺ . 11
Table S9. Optimized Cartesian Coordinates of 1 ³⁺ . 12

	1+
Empirical formula	$C_{109}H_{105}CI_{3}F_{12}Fe_{3}N_{7}P_{8}Ru$
Color and Habit	Brown block
Crystal Size (mm)	0.1 imes 0.1 imes 0.1
Temperature(K)	100.0(10)
Crystal system	Monoclinic
Space group	P2 ₁ /n
a (Å)	17.5721(3)
b (Å)	17.3121(2)
c (Å)	35.2530(5)
alpha (deg.)	90
beta (deg.)	100.2150(10)
gamma (deg.)	90
Volume (ų)	10554.3(3)
Z	4
Formula weight	2189.41
Density(cal.) (g/cm ³)	1.488
μ (mm⁻¹)	6.834
F (000)	4836.0
Theta range (deg.)	5.094 to 134.152
Reflections collected / unique	74182 / 18785 [R(int) = 0.0487]
Index range	-20<=h<=20, -16<=k<=20, -40<=l<=42
Data/restraints/parameters (obs.)	18785/72/1461
Final R indices (obs.)	$R_1 = 0.0540,$ $wR_2 = 0.1414$
R indices (all)	$R_1 = 0.0640,$ w $R_2 = 0.1477$
Goodness-of-fit	1.012

 $R_1 = \Sigma(||F_0| - |F_c||) / \Sigma |F_0|;$ wR₂ = [**\Sigmaw (**|F_0²| - |F_c²|)² / \Sigma w |F_0²|²]^{1/2}

	1 ⁺ -100 K	1 ⁺ -average
Ru(1)-Cl(1)	2.3513(10)	<u>_</u>
Ru(1)-N(1)	2.008(4)	
Ru(1)-N(2)	2.012(3)	2.013(5)
Ru(1)-N(3)	2.018(4)	
Ru(1)-N(4)	2.066(4)	
Ru(1)-N(6)	2.074(3)	2.070(4)
Fe(1)-C(1)	1.847(4)	
Fe(2)-C(2)	1.846(4)	1.846(5)
Fe(3)-C(3)	1.846(5)	
Fe(1)-P(1)	2.1875(12)	
Fe(1)-P(2)	2.1874(12)	2.1875(12)
Fe(2)-P(3)	2.1935(11)	
Fe(2)-P(4)	2.1822(11)	2.1879(11) av.2.1905(25
Fe(3)-P(5)	2.1929(17))
Fe(3)-P(6A)	2.062(2)	2.1960(32)
Fe(3)-P(6B)	2.333(3)	
C(1)-N(1)	1.158(5)	
C(2)-N(2)	1.165(5)	1.157(6)
C(3)-N(3)	1.149(5)	
N(1)-Ru(1)-N(2)	92.83(13)	
N(2)-Ru(1)-N(3)	90.44(13)	
N(1)-Ru(1)-N(3)	176.70(14)	
C(1)-N(1)-Ru(1)	163.5(3)	
C(2)-N(2)-Ru(1)	166.8(3)	
C(3)-N(3)-Ru(1)	165.1(3)	
N(1)-C(1)-Fe(1)	174.4(4)	
N(2)-C(2)-Fe(2)	173.4(3)	
N(3)-C(3)-Fe(3)	169.8(4)	

Table S2. Selected bond lengths (Å) and angles (deg.) for 1^+ .

Figure S1. Cyclic voltammogram of 1^+ recorded in a 1:1 mixture of CH_2Cl_2 and $CH_3CN / 0.1 M$ [TBA]PF₆ at scan rate of 50, 100, 150, 200 and 250 mV/s.

Figure S2. Peak distribution of the second redox peak of the DPV spectra.

Table S3. Redox potential according to the DPV sepctra for complexes 1^+ in a 1:1 mixture of CH₂Cl₂ and CH₃CN / 0.1 M [TBA]PF₆(vs. Cp₂Fe).

Method	E _{1/2} (1)/V	E _{1/2} (2)/V	E _{1/2} (3)/V	E _{1/2} (4)/V
DPV	-0.27	0.35	0.39	0.91

Figure S3. Liquid FTIR spectra of $1 - 1^{3+}$ in CH_2CI_2 .

Figure S4. UV-vis-NIR spectra of $1 - 1^{3+}$ in CH₂Cl₂.

Figure S5. Gaussian peak fitting of the second absorption band in the vis-NIR region of 1^{3+} .

Table S4. Selected	labsorption	bands of 1	– 1 ³+ in	CH_2CI_2
--------------------	-------------	------------	------------------	------------

Complex	$v_{\rm exp}$ (cm ⁻¹) (ε (M ⁻¹ cm ⁻¹))
1	20161 (4243)
1+	7321 (5192)
1 ²⁺	7310 (5921)
1 ³⁺	10504 (2567); 19217 (3020)

Table S5. Calculated electronic absorption of $1 - 1^{3+}$ in CH_2Cl_2 .

Complex	v_{cal}	Excitation (percentage)			
1	20654	HOMO-2 (208α) → LUMO (211α) (45%)			
	20054	HOMO-1 (209α) → LUMO (211α) (27%)			
1+	7755	HOMO-1 (208β) → LUMO (210β) (89%)			
12+	FC17	HOMO-1 (207β) → LUMO (209β) (44%)			
1-	5017	HOMO (208β) → LUMO (209β) (43%)			
	9650	HOMO-1 (206β) → LUMO (208β) (29%)			
1 ³⁺	6039	HOMO (207β) → LUMO (208β) (56%)			
	11911	HOMO (207β) → LUMO+1 (209β) (67%)			

Figure S6. ¹H NMR of [Ru(DMPZ)₄Cl₂] in CDCl₃.

Table S6. Optin	nized Cartesian	Coordinates	of 1.
-----------------	-----------------	-------------	-------

Ru	-0.32307	-0.30661	-0.27428	С	-1.3863	1.70133	1.672184
Fe	1.177615	4.369134	-0.73862	Н	-1.83071	2.08991	0.762386
Fe	4.27127	-2.14054	0.404584	С	-0.11789	5.731874	0.211177
Fe	-5.30688	-0.69924	-0.33961	Н	-0.53702	5.637076	1.202993
Cl	-0.79268	-2.56778	0.763466	С	-3.50097	-0.31214	-0.61635
Р	2.071677	3.509633	1.137893	С	1.077985	-0.87505	-2.8663
Р	2.996128	3.621264	-1.80503	Н	1.723271	-0.09141	-2.48551
Р	2.820186	-3.86657	0.523695	С	-0.2598	0.690867	3.929464
Р	4.109481	-2.0014	2.632198	С	-0.82578	-2.17599	-2.57087
Р	-4.62058	-2.71971	0.388	Н	-1.67325	-2.43574	-1.94894
Р	-4.94825	0.025706	1.753063	С	-0.716	5.267683	-1.00255
Ν	0.002686	-1.20722	-2.10556	Н	-1.6302	4.69637	-1.07953
Ν	-0.62583	0.576653	1.552666	С	1.277632	6.325433	-1.54835
Ν	-2.32102	-0.16694	-0.64864	Н	2.10455	6.732322	-2.11428
Ν	1.662693	-0.58875	0.141523	С	2.505577	-1.15286	-4.94044
Ν	-1.01257	1.815165	4.046479	Н	3.126685	-2.03597	-5.12301
Ν	0.092027	1.535075	-0.99023	Н	3.119225	-0.37432	-4.47468
Ν	0.502863	-2.48731	-4.54868	Н	2.16549	-0.79555	-5.9178
С	-1.57594	2.317815	2.918279	С	1.124881	6.397622	-0.13087
С	0.46311	2.664728	-1.00033	н	1.793607	6.893793	0.5577
С	1.32733	-1.5147	-4.08776	С	2.733275	-1.09876	0.25463

С	-0.57457	-2.81553	-3.79473	Н	-2.29988	-4.09767	-3.62637
С	0.153244	5.605819	-2.09807	С	0.344633	0.136753	5.183634
Н	-0.02976	5.403538	-3.14248	н	-0.44126	-0.08681	5.912218
С	5.85121	-3.2577	-0.46501	Н	1.006095	0.876876	5.64605
Н	6.006858	-4.3238	-0.37834	Н	0.91292	-0.77849	4.98659
С	3.802021	2.290768	-0.70808	С	-5.8334	-0.06524	-2.28537
Н	3.194663	1.38076	-0.81501	Н	-5.10213	0.191652	-3.03756
Н	4.821558	2.081438	-1.04883	С	-6.35212	-1.37571	-2.03812
С	5.07388	-2.58986	-1.49006	Н	-6.14024	-2.26217	-2.61831
Н	4.557888	-3.06364	-2.31283	С	-7.2602	-1.28792	-0.91045
С	3.782545	2.754006	0.751346	Н	-7.84126	-2.09892	-0.49503
Н	4.532252	3.533715	0.93111	С	-4.21547	-2.63262	2.249706
Н	3.979631	1.914604	1.427332	Н	-5.12122	-2.91231	2.800754
С	-0.064	0.073348	2.686215	Н	-3.42088	-3.34884	2.478824
Н	0.517088	-0.83481	2.57616	С	-6.37862	0.834043	-1.30466
С	3.234388	-3.56015	3.294276	Н	-6.19241	1.895466	-1.23975
Н	4.004516	-4.33534	3.386586	С	-7.27694	0.069325	-0.47084
Н	2.818185	-3.37525	4.289849	Н	-7.85875	0.457548	0.354
С	5.164566	-1.18105	-1.25167	С	-3.77063	-1.20768	2.59157
Н	4.663273	-0.41813	-1.8318	Н	-2.77036	-1.02492	2.173518
С	5.953659	-0.96285	-0.07086	Н	-3.7401	-1.04026	3.673077
Н	6.23311	-0.00797	0.349854	Н	-6.0147	0.150845	2.713192
С	6.391462	-2.25975	0.39726	Н	-4.28162	1.279455	1.979308
Н	7.019605	-2.44232	1.258395	Н	-3.4051	-3.26305	-0.14597
С	2.148786	-3.97649	2.298762	Н	-5.48497	-3.86494	0.308213
Н	1.2808	-3.30216	2.316411	Н	5.252886	-1.89663	3.496687
Н	1.784359	-4.98777	2.501841	Н	3.298962	-0.94658	3.186762
С	-2.40997	3.554969	3.060263	Н	1.392431	2.403974	1.758013
Н	-3.25137	3.368586	3.736778	Н	2.345889	4.315587	2.295759
Н	-2.7999	3.892041	2.093989	Н	2.869745	2.933678	-3.05923
Н	-1.81829	4.359962	3.509757	Н	4.108211	4.479744	-2.11992
С	-1.48264	-3.88384	-4.32152	Н	3.274193	-5.203	0.249574
Н	-0.91748	-4.80405	-4.50041	Н	1.609651	-3.81368	-0.24375
Н	-1.90528	-3.57622	-5.28362				
Table	S7. Optimized	d Cartesian Co	ordinates of	1 +.			
Ru	0.101245	-0.29925	0.014654	Р	-3.36981	-3.65104	0.522691
Fe	-1.18153	4.518349	0.544574	Р	-5.51755	-1.41898	0.483939
Fe	4.856196	-1.31445	-0.16003	Ν	0.532002	0.075914	-1.98934
Fe	-4.21049	-2.31719	-1.10047	Ν	-0.36038	-0.69724	2.013857
Cl	0.385745	-2.72209	-0.39165	Ν	-1.84297	-0.56706	-0.43107
Р	0.709513	5.237121	1.536693	Ν	2.080208	-0.25012	0.379896
Р	-0.20438	5.019338	-1.41493	Ν	-1.10528	-1.31806	4.634441
Р	4.221524	-3.15504	0.968198	Ν	-0.17004	1.666002	0.309685
Р	5.818822	-0.62635	1.750649	Ν	1.12529	0.596936	-4.66519

С	-1.72403	-0.32198	3.954493	С	6.321541	-0.40029	-1.38473
С	-0.51941	2.803195	0.407869	Н	7.019293	0.368815	-1.08447
С	1.669259	1.347071	-3.6768	С	6.555809	-1.82405	-1.32453
С	-1.3514	-0.01161	2.636134	Н	7.468998	-2.30902	-1.01306
Н	-1.8358	0.778385	2.072835	С	4.405459	-2.78811	2.825017
С	-2.61261	4.304988	2.078087	Н	3.541987	-2.1742	3.1147
Н	-2.47972	3.806908	3.026985	Н	4.38301	-3.71388	3.407456
С	-2.83974	-1.1721	-0.69865	С	-2.80833	0.427441	4.665343
С	1.37397	1.08383	-2.32991	Н	-3.4894	-0.27339	5.158042
Н	1.805591	1.660639	-1.5191	Н	-3.37901	1.066709	3.982865
С	-0.10668	-1.9944	4.018298	Н	-2.37897	1.05466	5.454205
С	-0.00923	-0.67636	-2.97555	С	-0.28671	-1.23342	-5.43634
Н	-0.65824	-1.49157	-2.67749	Н	0.515419	-1.63252	-6.06439
С	-3.11012	3.717101	0.860467	Н	-0.91007	-0.60672	-6.08274
Н	-3.34595	2.672639	0.703734	Н	-0.88884	-2.06554	-5.06069
С	-2.73002	5.977353	0.4579	С	0.576506	-3.07921	4.791159
Н	-2.69999	6.943553	-0.02464	Н	-0.16438	-3.71059	5.28931
С	2.59047	2.454988	-4.0862	Н	1.202201	-2.64572	5.579469
Н	3.422681	2.054782	-4.67432	Н	1.203157	-3.7038	4.146796
Н	2.994314	2.992168	-3.22067	С	-4.05757	-1.85001	-3.15322
Н	2.063133	3.164036	-4.73324	Н	-3.49984	-1.00243	-3.52667
С	-2.40767	5.709045	1.821324	С	-3.53252	-3.16798	-2.90439
Н	-2.0594	6.437246	2.540758	Н	-2.5289	-3.51304	-3.10877
С	3.215501	-0.60338	0.2445	С	-4.6142	-3.97219	-2.39038
С	0.2921	-0.41448	-4.32585	Н	-4.55085	-5.01787	-2.12354
С	-3.16381	4.733714	-0.14482	С	-4.28328	-3.29936	2.158624
Н	-3.51536	4.604896	-1.15821	Н	-5.13731	-3.98457	2.207159
С	5.391491	-2.47094	-1.86083	Н	-3.63151	-3.51329	3.011863
Н	5.255686	-3.53786	-1.97211	С	-5.43071	-1.82817	-2.75147
С	1.650494	5.303287	-1.09554	Н	-6.1042	-0.9882	-2.83954
Н	2.111563	4.308107	-1.02962	С	-5.77697	-3.1552	-2.28381
Н	2.110123	5.840774	-1.93005	Н	-6.75185	-3.47859	-1.94816
С	4.43227	-1.4676	-2.2222	С	-4.7546	-1.84209	2.172085
Н	3.447712	-1.6496	-2.63098	Н	-3.90305	-1.15939	2.301073
С	1.813253	6.06388	0.223783	Н	-5.47026	-1.65898	2.97913
Н	1.4726	7.100749	0.122719	Н	-6.87908	-1.85144	0.626061
Н	2.856147	6.082166	0.552337	Н	-5.7049	-0.00032	0.575406
С	0.268042	-1.6813	2.699235	Н	-1.98561	-3.45473	0.846053
Н	1.037265	-2.23393	2.172892	Н	-3.4245	-5.07984	0.430418
С	5.712649	-2.01972	3.043982	Н	7.20479	-0.26204	1.783162
Н	6.580147	-2.67137	2.887778	Н	5.256538	0.492153	2.450746
Н	5.775871	-1.61107	4.056276	Н	1.591522	4.260873	2.108554
С	5.020565	-0.18048	-1.93625	Н	0.692659	6.202769	2.595564
Н	4.551907	0.781317	-2.08883	Н	-0.19087	4.057914	-2.48106

Н	-0.59103	6.194158	-2.14394	Н	2.867409	-3.60668	0.831051
н	4.943777	-4.38541	0.812342				

Table S8. Optimized Cartesian Coordinates of 1^{2+} .

Ru	0.168427	-0.29107	0.06285	С	3.300082	-0.31256	0.505055
Fe	-1.56293	4.376654	0.380714	С	0.546598	-0.61035	-4.26962
Fe	5.10637	-0.74218	0.281351	С	-3.48457	4.248701	-0.4811
Fe	-3.98174	-2.56235	-1.11644	Н	-3.72429	4.029771	-1.51143
Cl	0.636752	-2.73227	-0.21101	С	6.805043	-0.416	-1.08299
Р	0.069849	5.420653	1.54165	Н	7.14001	-1.06469	-1.88049
Ρ	-0.51717	5.09491	-1.48008	С	1.145252	5.88828	-0.99283
Р	4.37303	-2.57507	-0.91676	Н	1.879138	5.074658	-0.92037
Ρ	5.22151	-2.2024	2.061147	Н	1.480688	6.581503	-1.76913
Ρ	-3.21189	-3.77695	0.659558	С	5.813803	0.620543	-1.19722
Р	-5.45535	-1.64479	0.343033	Н	5.288856	0.897217	-2.10055
Ν	0.639082	0.025906	-1.95592	С	0.982708	6.59388	0.356624
Ν	-0.36439	-0.61715	2.066372	Н	0.365888	7.494202	0.25793
Ν	-1.69296	-0.71725	-0.44447	Н	1.948402	6.893319	0.773359
Ν	2.125304	-0.12715	0.476361	С	0.293795	-1.51563	2.837787
Ν	-1.20279	-1.14428	4.676242	Н	1.129178	-2.03896	2.386867
Ν	-0.20154	1.66818	0.274372	С	5.051319	-3.97326	1.420703
Ν	1.246057	0.488165	-4.63918	Н	6.039219	-4.28798	1.066692
С	-1.84915	-0.22962	3.914186	Н	4.760626	-4.64257	2.235365
С	-0.66292	2.770148	0.324	С	5.701603	1.269277	0.085995
С	1.644927	1.358684	-3.68077	Н	5.053927	2.099344	0.325655
С	-1.42712	0.035922	2.599197	С	6.578319	0.596307	0.99974
н	-1.92284	0.771422	1.974914	Н	6.759678	0.871718	2.028791
С	-3.07748	3.999444	1.801106	С	7.266753	-0.4453	0.264148
н	-2.96062	3.570689	2.785439	Н	8.029819	-1.10375	0.655767
С	-2.6768	-1.33777	-0.72661	С	4.016081	-3.98335	0.294597
С	1.341265	1.125885	-2.32889	Н	2.995622	-3.80629	0.661328
Н	1.64565	1.809349	-1.54386	Н	4.020091	-4.93835	-0.23811
С	-0.1263	-1.77991	4.154795	С	-3.01113	0.483241	4.532693
С	0.241523	-0.84454	-2.91426	Н	-3.65327	-0.22868	5.060277
Н	-0.29341	-1.72982	-2.58926	Н	-3.60466	1.02749	3.789826
С	-3.36425	3.293723	0.57894	н	-2.65763	1.196907	5.285003
Н	-3.41865	2.218931	0.456128	С	0.114509	-1.55016	-5.35019
С	-3.31369	5.566778	0.093426	Н	0.977972	-1.86818	-5.94219
Н	-3.39398	6.506946	-0.43335	Н	-0.56385	-1.04109	-6.04298
С	2.402639	2.570285	-4.12709	н	-0.38516	-2.4368	-4.94889
н	3.268905	2.277089	-4.72842	С	0.585242	-2.76098	5.031589
Н	2.740864	3.179003	-3.28167	Н	-0.13046	-3.456	5.479976
Н	1.773815	3.186928	-4.77833	Н	1.071719	-2.23833	5.862162
С	-3.07786	5.407921	1.48961	Н	1.338913	-3.33224	4.481488
н	-2.92387	6.211009	2.197069	С	-3.65533	-2.35739	-3.18667

Н	-3.02065	-1.59284	-3.61238	Н	-5.5396	-1.72425	2.839148
С	-3.2389	-3.667	-2.76102	Н	-6.79254	-2.1517	0.407593
Н	-2.24659	-4.08638	-2.8477	Н	-5.70165	-0.23753	0.287579
С	-4.40648	-4.35608	-2.26487	Н	-1.85955	-3.48074	1.029889
Н	-4.43449	-5.37259	-1.89808	Н	-3.19341	-5.20621	0.626671
С	-4.25183	-3.36438	2.196046	Н	6.353586	-2.20547	2.931622
н	-5.08028	-4.08058	2.231651	Н	4.141866	-2.03924	2.983237
Н	-3.65463	-3.50036	3.103175	Н	1.140174	4.63048	2.078769
С	-5.05499	-2.21749	-2.90189	Н	-0.22134	6.248461	2.672835
Н	-5.67124	-1.36311	-3.14069	Н	-0.12712	4.161072	-2.49957
С	-5.51683	-3.47061	-2.34421	Н	-1.13828	6.100676	-2.29212
Н	-6.53308	-3.70385	-2.05915	Н	5.247062	-3.13206	-1.90166
С	-4.77193	-1.92813	2.087105	Н	3.146691	-2.39367	-1.62721
Н	-3.95552	-1.20507	2.219638				

Table S9. Optimized Cartesian Coordinates of 1³⁺.

Ru	0.027656	-0.21986	-0.00037	С	-0.03671	-0.84689	-2.97297
Fe	-0.96244	4.702831	0.514363	н	-0.67154	-1.65029	-2.6216
Fe	4.875498	-1.39892	-0.16997	С	-2.93237	4.110819	1.004753
Fe	-4.57035	-2.12577	-0.78753	н	-3.29936	3.107646	0.839041
Cl	0.245003	-2.70988	-0.19383	С	-2.36992	6.34473	0.66524
Ρ	1.07391	5.431129	1.329824	Н	-2.29716	7.332122	0.230988
Ρ	-0.15622	5.357718	-1.53125	С	2.497768	2.237886	-4.32912
Ρ	4.002244	-3.2806	0.874007	Н	3.322621	1.81475	-4.91128
Ρ	6.022805	-1.06181	1.814228	Н	2.909488	2.844183	-3.51482
Ρ	-3.20929	-3.98434	-1.16327	Н	1.947667	2.888077	-5.01748
Ρ	-4.47849	-2.77728	1.427822	С	-1.98516	5.985317	1.992769
Ν	0.471274	-0.00365	-2.04384	Н	-1.53366	6.647206	2.719452
Ν	-0.43602	-0.46157	2.036249	С	3.184625	-0.5949	0.228657
Ν	-1.94201	-0.5404	-0.39559	С	0.274082	-0.69663	-4.34021
Ν	2.050777	-0.25225	0.301337	С	-2.96317	5.179925	0.045074
Ν	-1.18347	-0.86703	4.700028	Н	-3.42865	5.149252	-0.92987
Ν	-0.19565	1.746133	0.163521	С	5.342706	-2.7054	-1.9005
Ν	1.092323	0.298784	-4.75278	Н	5.136308	-3.76074	-2.01769
С	-1.83249	0.041182	3.930993	С	1.690567	5.750077	-1.37111
С	-0.42449	2.911941	0.280534	Н	2.230815	4.797781	-1.43952
С	1.603745	1.146569	-3.82733	Н	2.011832	6.38467	-2.20173
С	-1.45831	0.241358	2.590939	С	4.470285	-1.63339	-2.28128
Н	-1.97416	0.952075	1.955278	Н	3.482658	-1.74263	-2.70852
С	-2.29799	4.598461	2.199437	С	1.938574	6.432477	-0.02363
Н	-2.1325	4.043956	3.112225	Н	1.518669	7.444232	-0.00296
С	-2.99435	-1.06269	-0.56318	Н	3.00758	6.515392	0.191573
С	1.29428	0.993539	-2.46506	С	0.218724	-1.35583	2.815093
Н	1.699923	1.654936	-1.70689	Н	1.01123	-1.92922	2.348868
С	-0.15658	-1.56215	4.157728	С	5.703824	-2.52921	2.964519

Н	6.448974	-3.29814	2.732597	Н	-4.84399	-2.38085	-3.67295
Н	5.853252	-2.22911	4.005368	С	-6.16041	-3.04871	-1.95965
С	5.149293	-0.39305	-2.00671	Н	-6.31764	-4.1001	-2.15782
Н	4.764527	0.597271	-2.20311	С	-2.95665	-4.90793	0.46857
С	6.424778	-0.70254	-1.42319	Н	-3.75754	-5.64867	0.566546
Н	7.197641	0.006296	-1.16044	Н	-2.00198	-5.44048	0.429339
С	6.533986	-2.14101	-1.33706	С	-6.34449	-0.93435	-1.02717
Н	7.397673	-2.69517	-0.99697	Н	-6.65808	-0.12153	-0.38723
С	4.278612	-3.0386	2.730268	С	-6.76743	-2.30244	-0.90708
Н	3.538044	-2.30621	3.074938	Н	-7.43774	-2.69759	-0.15604
Н	4.107058	-3.98032	3.260052	С	-2.97036	-3.89925	1.61929
С	-2.94704	0.80784	4.571214	Н	-2.07958	-3.25757	1.576524
Н	-3.6324	0.125651	5.083227	Н	-2.9985	-4.40452	2.588918
Н	-3.50987	1.405193	3.846102	Н	-5.57222	-3.51592	1.975648
Н	-2.54991	1.472504	5.346282	Н	-4.31122	-1.7327	2.387595
С	-0.27617	-1.61494	-5.38336	Н	-1.88746	-3.62398	-1.56905
Н	0.538686	-2.08314	-5.94421	Н	-3.60102	-4.9726	-2.11603
Н	-0.86304	-1.04743	-6.11275	Н	7.438464	-0.88636	1.789182
Н	-0.90372	-2.40011	-4.95188	Н	5.590605	0.090475	2.538316
С	0.548665	-2.54509	5.0375	Н	1.983354	4.371742	1.630278
Н	-0.17804	-3.11206	5.625452	Н	1.162227	6.231391	2.50833
Н	1.184493	-2.01998	5.759311	Н	-0.25449	4.402491	-2.58822
Н	1.16588	-3.24346	4.463765	Н	-0.72923	6.521698	-2.13122
С	-5.49913	-0.8263	-2.18666	Н	4.581803	-4.55538	0.58827
Н	-5.04168	0.077777	-2.55974	Н	2.597523	-3.47136	0.659637
С	-5.36133	-2.13642	-2.75616				