## Design and Evaluation of Novel Energetic Materials Based on Tricyclo[3.1.1.1<sup>2,4</sup>]

Dongrun Tang<sup>a</sup>, Xiaoli Duan<sup>a</sup>, Yunlu Li<sup>a</sup>, Yunzhang Liu<sup>b</sup>, Jianlong Wang<sup>c</sup>, Lizhen Chen<sup>c\*</sup>

<sup>a</sup>School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
<sup>b</sup>Shanxi North Xingan Chemical Industries Co., Ltd, Taiyuan 030051, China
<sup>c</sup>School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
\*Email: chen17555@163.com

Center Coordinates (Angstroms) Atomic Atomic Y Ζ Number Number Type Х 1 6 0 -0.967403-0.808537 -0.0000372 0 0.967269 -0.808688 0.000006 6 3 0 0.967403 6 0.808537 -0.000037 -0.967269 4 6 0 0.808688 0.000006 7 0 -0.000049 1.312033 -1.001040 5 7 0.000049 6 0 1.312572 1.001135 7 7 0 0.000049 -1.312033 -1.001040 8 7 0 -0.000049-1.312572 1.001135 9 1 0 1.964760 1.248776 0.000270 10 0 -1.964760 -1.248776 0.000270 1 11 0 -1.964781 1.248577 1 -0.000765 12 0 1 1.964781 -1.248577 -0.000765 13 0 0.000237 -1.895368 1 -0.841977 14 1 0 0.000127 -0.842281 1.895387 15 -0.000127 1.895387 1 0 0.842281 0 16 1 -0.0002370.841977 -1.895368

**Table S1.** Cartesian XYZ Coordinates for the Optimized Structure of the Compound **Tecage** at the  $\omega$ B97XD/def2-TZVP level.

| Bond   | Length (Å) | Mayer      |
|--------|------------|------------|
| C1-H10 | 1.0902     | 0.96410462 |
| С2-Н12 | 1.0902     | 0.96410536 |
| С3-Н9  | 1.0902     | 0.96410462 |
| C4-H11 | 1.0902     | 0.96410536 |
| N5-H16 | 1.0103     | 0.92297184 |
| N6-H15 | 1.0104     | 0.92295416 |
| N7-H13 | 1.0103     | 0.92297184 |
| N8-H14 | 1.0104     | 0.92295416 |

**Table S2.** Selected bond lengths and Mayer bond orders of the compound **Tecage**, which can determine nitro substitution sites.

The nitro group will substitute the **H16** atom.

**Table S3.** Cartesian XYZ Coordinates for the Optimized Structure of the Compound **Tec-1** at the ωB97XD/def2-TZVP level.

| Center | Atomic | Atomic | Со        | ordinates (Angstron | ns)       |
|--------|--------|--------|-----------|---------------------|-----------|
| Number | Number | Туре   | Х         | Y                   | Ζ         |
| 1      | 6      | 0      | -1.152795 | -0.673229           | -0.968893 |
| 2      | 6      | 0      | -1.152795 | -0.673229           | 0.968893  |
| 3      | 6      | 0      | -0.443019 | 0.771802            | 0.986344  |
| 4      | 6      | 0      | -0.443019 | 0.771802            | -0.986344 |
| 5      | 7      | 0      | 0.661712  | 0.798402            | 0.000000  |
| 6      | 7      | 0      | -1.202918 | 1.589704            | 0.000000  |
| 7      | 7      | 0      | -0.491079 | -1.552557           | -0.000000 |
| 8      | 7      | 0      | -2.268849 | -0.619900           | -0.000000 |
| 9      | 1      | 0      | -0.244181 | 1.195050            | 1.966288  |
| 10     | 1      | 0      | -1.350915 | -1.058994           | -1.967073 |
| 11     | 1      | 0      | -0.244181 | 1.195050            | -1.966288 |
| 12     | 1      | 0      | -1.350915 | -1.058995           | 1.967072  |
| 13     | 7      | 0      | 1.783250  | 0.011644            | 0.000000  |
| 14     | 8      | 0      | 2.250508  | -0.263063           | -1.086347 |
| 15     | 8      | 0      | 2.250508  | -0.263063           | 1.086347  |
| 16     | 1      | 0      | -0.813773 | 2.527351            | 0.000000  |
| 17     | 1      | 0      | -2.740175 | 0.277193            | -0.000000 |
| 18     | 1      | 0      | 0.510971  | -1.641570           | -0.000000 |

| Bond   | Length (Å) | Mayer      |
|--------|------------|------------|
| N5-N13 | 1.37       | 1.00078365 |
| N6-H16 | 1.006      | 0.90403665 |
| N7-H18 | 1.0152     | 0.91580049 |
| N8-H17 | 1.0134     | 0.90590058 |

Table S4. Selected bond lengths and Mayer bond orders of the compound Tec-1, which can determine nitro substitution sites.

The nitro group will substitute the H16 atom.

**Table S5.** Cartesian XYZ Coordinates for the Optimized Structure of the Compound **Tec-2** at the  $\omega$ B97XD/def2-TZVP level.

| Center | Atomic | Atomic | Со        | ordinates (Angstron | ns)       |
|--------|--------|--------|-----------|---------------------|-----------|
| Number | Number | Туре   | Х         | Y                   | Ζ         |
| 1      | 6      | 0      | -0.776577 | 1.456060            | 0.968195  |
| 2      | 6      | 0      | -0.776578 | 1.456060            | -0.968195 |
| 3      | 6      | 0      | 0.176678  | 0.178650            | -0.994435 |
| 4      | 6      | 0      | 0.176678  | 0.178650            | 0.994435  |
| 5      | 7      | 0      | 1.233003  | 0.512991            | -0.000000 |
| 6      | 7      | 0      | -0.282625 | -0.814124           | 0.000000  |
| 7      | 7      | 0      | -0.265004 | 2.449618            | -0.000000 |
| 8      | 7      | 0      | -1.836802 | 1.098116            | -0.000000 |
| 9      | 1      | 0      | 0.496609  | -0.182345           | -1.964429 |
| 10     | 1      | 0      | -1.061957 | 1.796774            | 1.960055  |
| 11     | 1      | 0      | 0.496609  | -0.182344           | 1.964429  |
| 12     | 1      | 0      | -1.061957 | 1.796773            | -1.960055 |
| 13     | 7      | 0      | 2.339351  | -0.377539           | -0.000000 |
| 14     | 8      | 0      | 2.780635  | -0.670959           | 1.079725  |
| 15     | 8      | 0      | 2.780634  | -0.670960           | -1.079725 |
| 16     | 1      | 0      | -2.522547 | 1.844024            | -0.000000 |
| 17     | 1      | 0      | 0.740828  | 2.584369            | -0.000000 |
| 18     | 7      | 0      | -1.544188 | -1.400368           | 0.000000  |
| 19     | 8      | 0      | -1.992817 | -1.676206           | -1.084065 |
| 20     | 8      | 0      | -1.992817 | -1.676206           | 1.084065  |

| Bond   | Length (Å) | Mayer      |
|--------|------------|------------|
| N5-N13 | 1.5076     | 0.96816385 |
| N6-N18 | 1.0824     | 0.96289468 |
| N7-H17 | 1.0828     | 0.90903422 |
| N8-H16 | 1.0827     | 0.90462268 |

Table S6. Selected bond lengths and Mayer bond orders of the compound Tec-2, which can determine nitro substitution sites.

The nitro group will substitute the H16 atom.

**Table S7.** Cartesian XYZ Coordinates for the Optimized Structure of the Compound **Tec-3** at the  $\omega$ B97XD/def2-TZVP level.

| Center | Atomic | Atomic | Со        | ordinates (Angstron | ns)       |
|--------|--------|--------|-----------|---------------------|-----------|
| Number | Number | Туре   | Х         | Y                   | Ζ         |
| 1      | 6      | 0      | 0.017158  | -1.333564           | -0.989401 |
| 2      | 6      | 0      | 0.017158  | -1.333564           | 0.989401  |
| 3      | 6      | 0      | -0.328577 | 0.218309            | 0.998022  |
| 4      | 6      | 0      | -0.328577 | 0.218309            | -0.998022 |
| 5      | 7      | 0      | 0.604569  | 0.794371            | 0.000000  |
| 6      | 7      | 0      | -1.382568 | 0.496743            | -0.000000 |
| 7      | 7      | 0      | 1.084484  | -1.605146           | 0.000000  |
| 8      | 7      | 0      | -0.916916 | -1.910985           | 0.000000  |
| 9      | 1      | 0      | -0.395392 | 0.696338            | 1.967312  |
| 10     | 1      | 0      | 0.102863  | -1.787146           | -1.970286 |
| 11     | 1      | 0      | -0.395392 | 0.696337            | -1.967312 |
| 12     | 1      | 0      | 0.102863  | -1.787146           | 1.970286  |
| 13     | 7      | 0      | 0.663323  | 2.216829            | 0.000000  |
| 14     | 8      | 0      | 0.726829  | 2.736997            | -1.080424 |
| 15     | 8      | 0      | 0.726827  | 2.736998            | 1.080424  |
| 16     | 1      | 0      | -0.821795 | -2.919610           | 0.000000  |
| 17     | 7      | 0      | -2.650573 | -0.083810           | -0.000000 |
| 18     | 8      | 0      | -3.147025 | -0.250870           | 1.084151  |
| 19     | 8      | 0      | -3.147025 | -0.250870           | -1.084152 |
| 20     | 7      | 0      | 2.353238  | -1.019094           | 0.000000  |
| 21     | 8      | 0      | 2.848633  | -0.844756           | 1.084351  |
| 22     | 8      | 0      | 2.848633  | -0.844757           | -1.084351 |

| Center | Atomic | Atomic | Со        | ordinates (Angstroi | ns)       |
|--------|--------|--------|-----------|---------------------|-----------|
| Number | Number | Туре   | Х         | Y                   | Ζ         |
| 1      | 6      | 0      | 0.577504  | -0.546456           | 1.000460  |
| 2      | 6      | 0      | 0.577504  | -0.546455           | -1.000460 |
| 3      | 6      | 0      | -0.577610 | 0.547060            | -1.000474 |
| 4      | 6      | 0      | -0.577610 | 0.547060            | 1.000474  |
| 5      | 7      | 0      | -1.539615 | 0.028416            | 0.000000  |
| 6      | 7      | 0      | -0.283656 | 1.595429            | -0.000000 |
| 7      | 7      | 0      | 0.283513  | -1.594727           | -0.000000 |
| 8      | 7      | 0      | 1.539602  | -0.027798           | 0.000000  |
| 9      | 1      | 0      | -0.955912 | 0.845515            | -1.970107 |
| 10     | 1      | 0      | 0.955773  | -0.844921           | 1.970102  |
| 11     | 1      | 0      | -0.955912 | 0.845515            | 1.970107  |
| 12     | 1      | 0      | 0.955773  | -0.844921           | -1.970102 |
| 13     | 7      | 0      | -2.804151 | 0.690246            | 0.000000  |
| 14     | 8      | 0      | -3.282610 | 0.894633            | 1.080788  |
| 15     | 8      | 0      | -3.282610 | 0.894632            | -1.080788 |
| 16     | 7      | 0      | 0.858301  | 2.403173            | -0.000000 |
| 17     | 8      | 0      | 1.255261  | 2.738557            | -1.084846 |
| 18     | 8      | 0      | 1.255261  | 2.738557            | 1.084846  |
| 19     | 7      | 0      | -0.857793 | -2.403255           | 0.000000  |
| 20     | 8      | 0      | -1.254533 | -2.738920           | -1.084853 |
| 21     | 8      | 0      | -1.254533 | -2.738920           | 1.084853  |
| 22     | 7      | 0      | 2.803695  | -0.690509           | 0.000000  |
| 23     | 8      | 0      | 3.282024  | -0.895224           | 1.080778  |
| 24     | 8      | 0      | 3.282024  | -0.895224           | -1.080778 |

**Table S8.** Cartesian XYZ Coordinates for the Optimized Structure of the Compound **Tec-4** at the ωB97XD/def2-TZVP level.

| Bond   | Length (Å) | Mayer      |
|--------|------------|------------|
| C1-H10 | 1.0828     | 0.94232787 |
| C2-H12 | 1.0828     | 0.94232787 |
| С3-Н9  | 1.0828     | 0.94234911 |
| C4-H11 | 1.0828     | 0.94234912 |

Table S9. Selected bond lengths and Mayer bond orders of the compound Tec-4, which can determine nitro substitution sites.

The nitro group will substitute the H9 atom.

| Center | Atomic | Atomic | Со        | ordinates (Angstroi | <br>ns)   |
|--------|--------|--------|-----------|---------------------|-----------|
| Number | Number | Туре   | Х         | Y                   | Ζ         |
| 1      | 6      | 0      | 0.590884  | -0.456726           | 0.464554  |
| 2      | 6      | 0      | 0.246106  | -0.057164           | -1.438257 |
| 3      | 6      | 0      | -1.058201 | 0.759299            | -1.038083 |
| 4      | 6      | 0      | -0.703841 | 0.376816            | 0.893862  |
| 5      | 7      | 0      | -1.724039 | -0.125622           | -0.053307 |
| 6      | 7      | 0      | -0.766349 | 1.629476            | 0.117802  |
| 7      | 7      | 0      | 0.322471  | -1.327049           | -0.672921 |
| 8      | 7      | 0      | 1.274673  | 0.445101            | -0.494812 |
| 9      | 1      | 0      | 0.498789  | -0.083867           | -2.490422 |
| 10     | 7      | 0      | -3.065030 | 0.252845            | 0.272841  |
| 11     | 8      | 0      | -3.365588 | 0.143405            | 1.427374  |
| 12     | 8      | 0      | -3.754018 | 0.559873            | -0.658705 |
| 13     | 7      | 0      | 0.195996  | 2.652373            | 0.120346  |
| 14     | 8      | 0      | 0.331610  | 3.223978            | -0.930390 |
| 15     | 8      | 0      | 0.701545  | 2.888104            | 1.181319  |
| 16     | 7      | 0      | -0.687761 | -2.319433           | -0.696653 |
| 17     | 8      | 0      | -1.173507 | -2.510117           | -1.777582 |
| 18     | 8      | 0      | -0.875999 | -2.898405           | 0.335009  |
| 19     | 7      | 0      | 2.627722  | 0.105915            | -0.859906 |
| 20     | 8      | 0      | 3.374257  | -0.058166           | 0.058394  |
| 21     | 8      | 0      | 2.862842  | 0.125227            | -2.033762 |
| 22     | 1      | 0      | -0.919469 | 0.394408            | 1.954688  |
| 23     | 1      | 0      | -1.645750 | 1.155342            | -1.856796 |
| 24     | 7      | 0      | 1.364234  | -1.013741           | 1.632729  |
| 25     | 8      | 0      | 1.846295  | -2.100845           | 1.498294  |
| 26     | 8      | 0      | 1.405477  | -0.285340           | 2.592202  |

Table S10. Cartesian XYZ Coordinates for the Optimized Structure of the Compound Tec-5 at the  $\omega$ B97XD/def2-TZVP level.

| Bond   | Length (Å) | Mayer      |
|--------|------------|------------|
| C1-N24 | 1.5076     | 0.858163   |
| С2-Н9  | 1.0824     | 0.93871364 |
| C3-H23 | 1.0828     | 0.9447788  |
| C4-H22 | 1.0827     | 0.94784466 |

Table S11. Selected bond lengths and Mayer bond orders of the compound Tec-5, which can determine nitro substitution sites.

The nitro group will substitute the H9 atom.

| Center | Atomic | Atomic | Со        | ordinates (Angstroi | ms)       |
|--------|--------|--------|-----------|---------------------|-----------|
| Number | Number | Туре   | Х         | Y                   | Ζ         |
| 1      | 6      | 0      | 0.365572  | -0.269814           | -0.977040 |
| 2      | 6      | 0      | 0.365572  | -0.269813           | 0.977040  |
| 3      | 6      | 0      | -0.986178 | 0.585816            | 1.001252  |
| 4      | 6      | 0      | -0.986178 | 0.585814            | -1.001253 |
| 5      | 7      | 0      | -0.898976 | 1.661472            | -0.000001 |
| 6      | 7      | 0      | -1.817355 | -0.120353           | 0.000000  |
| 7      | 7      | 0      | 1.214230  | 0.461096            | -0.000000 |
| 8      | 7      | 0      | 0.311444  | -1.355882           | 0.000001  |
| 9      | 7      | 0      | 0.040268  | 2.712251            | -0.000002 |
| 10     | 8      | 0      | 0.349532  | 3.119647            | -1.085201 |
| 11     | 8      | 0      | 0.349531  | 3.119649            | 1.085196  |
| 12     | 7      | 0      | -3.199088 | 0.266067            | -0.000000 |
| 13     | 8      | 0      | -3.702501 | 0.366689            | 1.081606  |
| 14     | 8      | 0      | -3.702501 | 0.366687            | -1.081608 |
| 15     | 7      | 0      | 2.639400  | 0.182685            | 0.000000  |
| 16     | 8      | 0      | 3.142855  | 0.143526            | 1.080541  |
| 17     | 8      | 0      | 3.142855  | 0.143521            | -1.080540 |
| 18     | 7      | 0      | -0.717139 | -2.357473           | 0.000001  |
| 19     | 8      | 0      | -1.051971 | -2.735152           | -1.083599 |
| 20     | 8      | 0      | -1.051971 | -2.735151           | 1.083602  |
| 21     | 1      | 0      | -1.389651 | 0.797170            | -1.983501 |
| 22     | 1      | 0      | -1.389651 | 0.797173            | 1.983499  |
| 23     | 7      | 0      | 0.909108  | -0.583710           | -2.352502 |
| 24     | 8      | 0      | 1.393226  | -1.664864           | -2.511430 |
| 25     | 8      | 0      | 0.774460  | 0.309934            | -3.148767 |
| 26     | 7      | 0      | 0.909108  | -0.583706           | 2.352504  |
| 27     | 8      | 0      | 1.393226  | -1.664860           | 2.511433  |
| 28     | 8      | 0      | 0.774457  | 0.309938            | 3.148768  |

Table S12. Cartesian XYZ Coordinates for the Optimized Structure of the Compound Tec-6 at the  $\omega$ B97XD/def2-TZVP level.

| Bond   | Length (Å) | Mayer      |
|--------|------------|------------|
| C1-N23 | 1.5119     | 0.85160686 |
| C2-N26 | 1.5119     | 0.85160693 |
| C3-H22 | 1.0827     | 0.95100829 |
| C4-H21 | 1.0827     | 0.9510084  |

Table S13. Selected bond lengths and Mayer bond orders of the compound Tec-6, which can determine nitro substitution sites.

The nitro group will substitute the H21 atom.

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |
|--------|--------|--------|-------------------------|-----------|-----------|
| Number | Number | Туре   | Х                       | Y         | Ζ         |
| 1      | 6      | 0      | -1.098748               | 0.819319  | -0.116377 |
| 2      | 6      | 0      | -0.185774               | -0.743863 | 0.625323  |
| 3      | 6      | 0      | 1.148719                | -0.340725 | -0.212691 |
| 4      | 6      | 0      | 0.197361                | 1.235316  | -0.939872 |
| 5      | 7      | 0      | 0.798653                | 0.040430  | -1.571417 |
| 6      | 7      | 0      | 1.269364                | 1.109907  | 0.072724  |
| 7      | 7      | 0      | -1.243680               | -0.628865 | -0.409741 |
| 8      | 7      | 0      | -0.776643               | 0.432540  | 1.255293  |
| 9      | 7      | 0      | 0.125162                | -0.780609 | -2.527782 |
| 10     | 8      | 0      | -0.562541               | -0.167374 | -3.293504 |
| 11     | 8      | 0      | 0.387229                | -1.944428 | -2.490847 |
| 12     | 7      | 0      | 2.505256                | 1.762857  | -0.327172 |
| 13     | 8      | 0      | 3.509447                | 1.208523  | -0.001805 |
| 14     | 8      | 0      | 2.355808                | 2.823783  | -0.856248 |
| 15     | 7      | 0      | -2.559607               | -1.206180 | -0.125105 |
| 16     | 8      | 0      | -2.576233               | -2.171136 | 0.572119  |
| 17     | 8      | 0      | -3.442300               | -0.675276 | -0.724020 |
| 18     | 7      | 0      | -0.098186               | 1.327645  | 2.159618  |
| 19     | 8      | 0      | -0.398492               | 2.478776  | 2.015201  |
| 20     | 8      | 0      | 0.605220                | 0.809696  | 2.966872  |
| 21     | 1      | 0      | 0.119778                | 2.149044  | -1.514856 |
| 22     | 7      | 0      | -2.285086               | 1.738793  | -0.317952 |
| 23     | 8      | 0      | -3.040694               | 1.844575  | 0.603099  |
| 24     | 8      | 0      | -2.330627               | 2.267921  | -1.397919 |
| 25     | 7      | 0      | -0.088502               | -2.039779 | 1.394411  |
| 26     | 8      | 0      | -0.368360               | -2.010380 | 2.552619  |
| 27     | 8      | 0      | 0.265260                | -2.966955 | 0.712827  |
| 28     | 7      | 0      | 2.354360                | -1.205510 | 0.049120  |
| 29     | 8      | 0      | 2.954530                | -1.605434 | -0.902202 |
| 30     | 8      | 0      | 2.579657                | -1.370783 | 1.220379  |

Table S14. Cartesian XYZ Coordinates for the Optimized Structure of the Compound Tec-7 at the  $\omega$ B97XD/def2-TZVP level.

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |
|--------|--------|--------|-------------------------|-----------|-----------|
| Number | Number | Туре   | Х                       | Y         | Ζ         |
| 1      | 6      | 0      | -0.753352               | -0.981297 | -0.295662 |
| 2      | 6      | 0      | -0.754464               | 0.980369  | -0.295696 |
| 3      | 6      | 0      | 0.753352                | 0.981291  | 0.295663  |
| 4      | 6      | 0      | 0.754482                | -0.980395 | 0.295666  |
| 5      | 7      | 0      | 0.888838                | 0.000518  | 1.368942  |
| 6      | 7      | 0      | 1.438422                | 0.000829  | -0.583377 |
| 7      | 7      | 0      | -1.438428               | -0.000814 | 0.583342  |
| 8      | 7      | 0      | -0.888823               | -0.000557 | -1.368982 |
| 9      | 7      | 0      | 0.089208                | 0.000027  | 2.580136  |
| 10     | 8      | 0      | -0.154748               | -1.083766 | 3.011687  |
| 11     | 8      | 0      | -0.156282               | 1.083520  | 3.011565  |
| 12     | 7      | 0      | 2.914159                | 0.001700  | -0.543142 |
| 13     | 8      | 0      | 3.413682                | 1.080252  | -0.581951 |
| 14     | 8      | 0      | 3.414973                | -1.076262 | -0.581953 |
| 15     | 7      | 0      | -2.914129               | -0.001604 | 0.543260  |
| 16     | 8      | 0      | -3.414906               | 1.076384  | 0.582137  |
| 17     | 8      | 0      | -3.413780               | -1.080108 | 0.582124  |
| 18     | 7      | 0      | -0.089172               | -0.000104 | -2.580200 |
| 19     | 8      | 0      | 0.156349                | -1.083608 | -3.011564 |
| 20     | 8      | 0      | 0.154731                | 1.083676  | -3.011792 |
| 21     | 7      | 0      | -1.388940               | -2.347232 | -0.444098 |
| 22     | 8      | 0      | -1.932445               | -2.580576 | -1.479905 |
| 23     | 8      | 0      | -1.278529               | -3.034111 | 0.536458  |
| 24     | 7      | 0      | -1.391608               | 2.345616  | -0.444136 |
| 25     | 8      | 0      | -1.935421               | 2.578346  | -1.479915 |
| 26     | 8      | 0      | -1.281960               | 3.032598  | 0.536443  |
| 27     | 7      | 0      | 1.388915                | 2.347232  | 0.444087  |
| 28     | 8      | 0      | 1.932089                | 2.580740  | 1.480026  |
| 29     | 8      | 0      | 1.278806                | 3.033961  | -0.536611 |
| 30     | 7      | 0      | 1.391598                | -2.345644 | 0.444086  |
| 31     | 8      | 0      | 1.282319                | -3.032454 | -0.536659 |
| 32     | 8      | 0      | 1.935075                | -2.578538 | 1.480002  |

Table S15. Cartesian XYZ Coordinates for the Optimized Structure of the Compound Tec-8 at the  $\omega$ B97XD/def2-TZVP level.



Figure S1. The cage Strain is calculated using the isomeric reaction.

| Common d | $M_w/V_m$  |      | $\sigma_{tot}^{\ 2}$    | Theoretical                  | Experimental                 | Absolute Error |
|----------|------------|------|-------------------------|------------------------------|------------------------------|----------------|
| Compound | $(g/cm^3)$ | V    | (kcal/mol) <sup>2</sup> | Density (g/cm <sup>3</sup> ) | Density (g/cm <sup>3</sup> ) |                |
| TEX      | 1.93       | 0.18 | 146.04                  | 1.89                         | 2.00 <sup>[1]</sup>          | 0.11           |
| PATN     | 2.01       | 0.07 | 180.79                  | 1.92                         | 1.98 <sup>[2]</sup>          | 0.06           |
| TAOTN    | 1.99       | 0.09 | 171.68                  | 1.91                         | 1.97 <sup>[2]</sup>          | 0.05           |
| HNA      | 1.89       | 0.10 | 147.61                  | 1.82                         | 1.76 <sup>[3]</sup>          | 0.06           |
| HNHAA    | 2.06       | 0.06 | 152.48                  | 1.96                         | 2.02 <sup>[4]</sup>          | 0.06           |
| ONOP     | 1.93       | 0.04 | 261.08                  | 1.85                         | 1.85 <sup>[5]</sup>          | 0.00           |
| A1       | 1.76       | 0.23 | 97.60                   | 1.72                         | 1.68 <sup>[6]</sup>          | 0.04           |
| B1       | 1.91       | 0.10 | 219.33                  | 1.86                         | 1.88 <sup>[7]</sup>          | 0.02           |
| B2       | 1.87       | 0.14 | 215.36                  | 1.84                         | 1.86 <sup>[7]</sup>          | 0.02           |
| C1       | 1.73       | 0.18 | 84.52                   | 1.67                         | 1.61 <sup>[8]</sup>          | 0.06           |

Table S16. The theoretical densities calculated using Eq. (1) were compared with the experimental densities.

Mean Absolute Error (MAE): 0.0483 g/cm<sup>3</sup>.

The results in Table 16 demonstrate that the mean absolute error (MAE) of the theoretical densities calculated using Eq. 1 is 0.0483 g/cm<sup>3</sup>, indicating high predictive accuracy. Therefore, we conclude that the predictive accuracy of Eq. 1 is sufficiently robust to support performance evaluations across all compounds in this study.



TEX



















N

NO<sub>2</sub>

HNHAA





B1





Figure S2. The compounds listed in Table 16.

| Compound | Theoretical HOF (kJ/mol) | Experimental HOF (kJ/mol) | Absolute Error |
|----------|--------------------------|---------------------------|----------------|
| RDX      | 175.64                   | 192.17 <sup>[9]</sup>     | 16.53          |
| HMX      | 267.35                   | 263.70 <sup>[10]</sup>    | 3.65           |
| DHT      | 979.06                   | 1033.45 <sup>[11]</sup>   | 54.39          |
| DAAT     | 867.76                   | 861.90 <sup>[12]</sup>    | 5.86           |
| BTT      | 921.65                   | 935.96 <sup>[12]</sup>    | 14.31          |
| TATB     | 16.47                    | 28.42 <sup>[13]</sup>     | 11.95          |
| D1       | 344.26                   | 326.77 <sup>[9]</sup>     | 17.49          |
| D2       | 340.66                   | 324.26 <sup>[9]</sup>     | 16.40          |
| D3       | 468.44                   | 447.27 <sup>[9]</sup>     | 21.17          |
| E1       | -105.44                  | -129.41 <sup>[14]</sup>   | 23.97          |
| E2       | -46.44                   | -41.84 <sup>[14]</sup>    | 4.60           |

**Table S17.** The heats of formation (HOF) values determined using isodesmic reactions were compared with experimental values.

Mean Absolute Error (MAE): 13.48 kJ/mol

It can be seen from the table that the maximum absolute error of the predicted HOF and the experimental value is 23.97 kJ/mol, the minimum is 3.65 kJ/mol, and the average absolute error is 13.48 kJ/mol, which is very small and within the acceptable range. We have listed only 11 N-hetero-energetic compounds here, which cannot represent all of them, but can at least show that the HOF calculated by isodesmic reaction is valuable for reference.











BTT

TATB

D2





Figure S3. The compounds listed in Table 17.

## References

- [1] Lee, B.; Kim, N.; Jang, S.; Park, J. H.; Song, M.; Kwon, K.; Kim, S.; Kim, Y. G. Synthesis and characterization of 2,6-dinitro-3,7,10-trioxo-2,4,6,8,9,11-hexaaza[3.3.3]propellane as a promising insensitive high energy material. Journal of Industrial and Engineering Chemistry. 2022, 113, 360-367.
- [2] Pan, Y.; Zhu, W. H. Designing and looking for novel cage compounds based on bicyclo-HMX as high energy density compounds. RSC Advances. 2018, 8, 44-52.
- [3] Xu, Y. M.; Wang, G. X.; Liu, Y.; Gao, P.; Gong, X. D. Theoretical investigations on the density, detonation performance and stability of fluorinated hexanitroadamantanes. Structural Chemistry. 2021, 32, 1651-1657.
- [4] Pan, Y.; Zhu, W. H. Theoretical Design on a Series of Novel Bicyclic and Cage Nitramines as High Energy Density Compounds. The Journal of Physical Chemistry A. 2017, 121, 9163-9171.
- [5] Tian, M.; Chi, W. J.; Li, Q. S.; Li, Z. S. Theoretical design of highly energetic poly-nitro cage compounds. RSC Advances. 2016, 6, 47607-47615.
- [6] Zhu, L.; Zhou, Q.; Wang, W.; Li, H.; Li, B.; Zhang, Y.; Luo, J. Synthesis and characterization of a new cage-like energetic compound 3,7-dinitrato-9-nitro-9-azanoradamantane. Energetic Materials Frontiers. 2024.
- [7] Tang, L.; Zhu, W. H. Theoretical design on a series of new cage-shaped high energy density compounds. Journal of the Chinese chemical society. 2021, 68, 1852-1862.
- [8] Zhou, Q.; Zhu, L. Y.; Cai, R. N.; Huan, L.; Luo, J. Synthesis of a new oxa-type cage-like energetic compound 4,4,8,8-tetranitro-2-oxaadamantane. FirePhysChem. 2023, 3, 11-15.
- [9] Zhou, S. Y.; Yin, S. W.; Lai, W. P.; Liu, Y. Z.; Wang, Y. In-silico design of a new energetic material—1-Amino-5-nitrotetrazole with high energy and density. Computational Materials Science. 2016, 112, 67-74.
- [10] Pan, Y.; Zhu, W. H. Theoretical Design on a Series of Novel Bicyclic and Cage Nitramines as High Energy Density Compounds. The Journal of Physical Chemistry A. 2017, 121, 9163-9167.
- [11] Jaidann, M.; Roy, S.; Abou-Rachid, H.; Lussier, L. -S. A DFT theoretical study of heats of formation and detonation properties of nitrogen-rich explosives. Journal of Hazardous Materials. 2010, 176, 165-

173.

- [12] Abou-Rachid, H.; Song, Y.; Hu, A.; Dudiy, S.; Zybin, S. V.; Goddard, W. A. Predicting Solid-State Heats of Formation of Newly Synthesized Polynitrogen Materials by Using Quantum Mechanical Calculations. The Journal of Physical Chemistry. 2008, 112, 11914-11920.
- [13] Liao, X.; Ju, X. H.; Zhao, F. Q.; Yi, J. H. Substituent Effects on Thermodynamic and Detonation Properties of Polynitrobenzenes. Propellants, Explosives, Pyrotechnics. 2010, 35, 567-571.
- [14] Politzer, P.; Murray, J. S.; Grice, M. E.; DeSalvo, M.; Miller, E. Calculation of heats of sublimation and solid phase heats of formation. Molecular Physics. 1997, 91, 923-928.