Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

SUPPORTING INFORMATION

Novel green synthesis of Gd-doped TiO₂ nanoparticles for environmental remediation:

Statistical modeling and process optimization

Ashwini S. Gadge,^a Prakash Bobde,^b V. Ganesh^c and R. S. Gedam^{*a}

* Corresponding authors

^a Department of Physics, Visvesvaraya National Institute of Technology, Nagpur-440010, India

E-mail: <u>rupesh_gedam@rediffmail.com</u>

^b Department of Research & Development, UPES, Energy Acres Building, Bidholi, Dehradun-

248007, Uttarakhand, India

^c Department of Physics and Nanotechnology, SRM Institute of Science and Technology,

Kattankulathur, Chennai-603203, Tamil Nadu, India

Contents:

S1 - Experimental method for photoelectrochemical measurement

Fig. S1 SEM micrograph of: (a) GdT_0, (b) GdT_0.2, (c) GdT_0.4, (d) GdT_0.6, (e) GdT_0.8,

and (f-g) EDS and elemental mapping of GdT_0.8 photocatalyst

Fig. S2 (a) Kinetic plot for TC removal as a function of irradiation time under optimal conditions and (b) reusability test of 0.8%Gd-TiO₂ photocatalyst

Fig. S3 LC-MS spectra of TC using Gd_0.8 photocatalyst: (a) before light irradiation and (b) after 80 min of light irradiation

Fig. S4 Photocatalytic performance with the addition of different scavengers based on optimum conditions

Table S1 Physicochemical properties of tetracycline

Table S2 Calculated structural parameters and energy band gap of prepared samples

Table S3 BET surface area, pore volume, and mean pore diameter of 0% Gd-TiO₂ and 0.8%

 $Gd-TiO_2$

Table S4 Experimental and predicted values for TC removal were obtained through the RSM

 based CCD method

Table S5 ANOVA results for coefficients of quadratic model for TC degradation

Table S6 ANOVA for the fitted quadratic polynomial model

 Table S7 Comparison of prepared photocatalyst for degradation of pollutant with other

 reported work

S1 - Experimental method for photoelectrochemical measurement

The photocurrent measurement was conducted on a CHI604E electrochemical analyzer in a three-electrode system with a 0.5 M Na₂SO₄ electrolyte solution, using platinum wire as a counter electrode, Ag/AgCl as a reference electrode, and spin-coated prepared sample on glassy carbon electrode as a working electrode. Before starting the measurement, the electrolyte was purified with argon for 30 min. The working electrode was prepared by following steps: 5 mg of the photocatalyst was dispersed in 2 ml isopropyl alcohol and then 4 μ l Naflon solution (5 wt%, Sigma Aldrich) was added to the solution, and the mixture was sonicated for 30 min. After that, the solution was spin-coated on the working electrode dried in air, and then sintered at 350 °C for 40 min to enhance adhesion. During light off-on cycling, the working electrode was exposed to 100 mWcm⁻² from a 300 W xenon lamp, and the photocurrent was measured at 0 V.

For the electrochemical study, the working electrode was prepared by Dr. Blade method following the standard procedure: The working electrode of Gd-doped TiO₂ was deposited on FTO using prepared nanoparticles, polyvinylidene fluoride (binder material), and carbon black with a mass ratio of 80:10:10 respectively. The above components were ground for an hour to form a homogenous mixture and then it was mixed with N-methyl-2-pyrrolidone (NMP) until it formed the slurry with the desired viscosity. Then prepared slurry was deposited on the well-cleaned FTO substrate and dried in an oven at 60 °C for 16 hr. The electrochemical impedance measurement (EIS) of the prepared sample was performed on Gamry Interface-1010 E electrochemical workstation system at room temperature with formed material deposited on FTO as working electrode (WE), Ag/AgCl as reference electrode (RE), and platinum wire as

counter electrode (CE) in three electrodes configurations in 0.5 M Na₂SO₄ aqueous electrolyte solution.

Fig. S1 SEM micrograph of: (a) GdT_0, (b) GdT_0.2, (c) GdT_0.4, (d) GdT_0.6, (e) GdT_0.8, and (f-g) EDS and elemental mapping of GdT_0.8 photocatalyst.

Fig. S2 (a) Kinetic plot for TC removal as a function of irradiation time under optimal conditions and (b) reusability test of 0.8%Gd-TiO₂ photocatalyst.

Fig. S3 LC-MS spectra of TC using Gd_0.8 photocatalyst: (a) before light irradiation and (b) after 80 min of light irradiation.

Fig. S4 Photocatalytic performance with the addition of different scavengers based on optimum

Antibiotic	Chemical structure	Chemical Formula	Molecular weight (g/mol)	λ _{max} (nm)
Tetracycline (TC)		C ₂₂ H ₂₄ N ₂ O ₈	444.4	359

Table S1	Physicochemical	properties of	of tetracycline
----------	-----------------	---------------	-----------------

conditions.

Table S2 Calculated structural parameters and energy band gap of prepared samples

Photocatalyst	Crystallite size	Unit cell parameter		Dislocation	Lattice strain (ɛ)	Band gap
code	(nm)	a=b (Å)	c (Å)	density (δ) (nm ⁻²)	(ε×10-3)	(eV)
				$(\delta \times 10^{-3})$		
GdT_0	8.70	3.7835	9.4946	13.21	3.98	2.92
GdT_0.2	7.31	3.7833	9.4974	18.71	4.73	2.89
GdT_0.4	6.68	3.7857	9.4928	22.41	4.93	2.84
GdT_0.6	6.66	3.7863	9.4924	22.54	4.94	2.80

GdT_0.8	6.47	3.7866	9.4889	23.88	5.35	2.75

Table S3 BET surface area, pore volume, and mean pore diameter of 0% Gd-TiO $_2$ and 0.8% Gd-TiO $_2$

Photocatalyst	S _{BET}	Pore volume	Mean Pore diameter
Code	(m^{2}/g)	(cm^{3}/g)	(nm)
GdT_0	134.069	0.2161	3.8633
GdT_0.8	173.118	0.2833	3.8538

Table S4 Experimental and predicted values for TC removal were obtained through the RSM-based CCD method

Run No.	Catalyst	TC concentration	pН	Experimental	Predicted	Residual
	dose	(mg/L)	value	Degradation	Degradation	
	(mg/100 ml)			efficiency	efficiency	
1	10	10	4	79.75	79.28	0.47
2	20	10	4	90.88	92.87	-1.99
3	10	30	4	59.43	58.05	1.38
4	20	30	4	87.06	85.47	1.59
5	10	10	10	69.74	71.10	-1.36
6	20	10	10	62.63	63.77	-1.14
7	10	30	10	66.08	63.86	2.22
8	20	30	10	70.12	70.36	-0.24
9	7.5	20	7	68.86	70.56	-1.71
10	22.5	20	7	86.93	85.64	1.29
11	15	5	7	85.74	82.96	2.78
12	15	35	7	68.79	71.98	-3.19
13	15	20	2.5	79.82	80.68	-0.86
14	15	20	11.5	63.67	63.22	0.45
15	15	20	7	83.90	84.08	-0.18
16	15	20	7	85.35	84.08	1.27
17	15	20	7	83.30	84.08	-0.78

Source	Sum of	df	Mean	F-value	p-value	Status
	Squares		Square			
Model	1627.91	9	180.88	29.8	< 0.0001	significant
A-Catalyst dose	315.56	1	315.56	51.99	0.0002	
B-TC con.	167.39	1	167.39	27.58	0.0012	
C-pH	423.7	1	423.7	69.81	< 0.0001	
AB	95.58	1	95.58	15.75	0.0054	
AC	218.7	1	218.7	36.03	0.0005	
BC	97.82	1	97.82	16.12	0.0051	
A^2	60.47	1	60.47	9.96	0.016	
B^2	73.86	1	73.86	12.17	0.0101	
C^2	248.84	1	248.84	41	0.0004	
Residual	42.49	7	6.07			
Lack of Fit	40.27	5	8.05	7.27	0.1254	not significant
Pure Error	2.22	2	1.11			
Cor Total	1670.4	16				

Table S5 ANOVA results for coefficients of quadratic model for TC degradation

Table S6 ANOVA for the fitted quadratic polynomial model

Std. Dev.	2.46	R ²	0.9746
Mean	76	Adj. R ²	0.9419
C.V.% (Coefficient of variations)	3.24	Pred. R ²	0.8044
		Adeq. precision	18.427

Table S7 Comparison of prepared photocatalyst for degradation of pollutant with other reported work							
Photocatalyst	Synthesis method	Experimental condition	Light	Pollutant	Degradation	References	
			source		efficiency		
					(%)		
α-Fe2O3/TiO ₂	Wet impregnation	[catalyst]: 0.614 g/L, [C ₀]: 30	500W	Tetracycline	99.89%	1	
	and sonochemical	mg/L, [pH]: 5, [time]: 161 min	Halogen				
	method						
g-C3N4	-	[catalyst]: 0.56 g/L, [C ₀]: 22.16	300W	Tetracycline	94.8%	2	
membrane reactor		mg/L, [pH]: 9.78, [time]: 113.77	Xenon				

		min	lamp			
CFs/g- C ₃ N ₄ /BiOBr	Chemical bath deposition method	[catalyst]: 0.15 g, [C ₀]: 20 mg/L, [pH]: 4.6, [time]: 120 min	Visible light	Tetracycline hydrochloride	86.1%	3
Ce-MOF	Different methods	[catalyst]: 1 g/L, [C ₀]: 120 mg/L, [pH]: 7, [time]: 120 min	UV light	Tetracycline	81.75%	4
NiMoO4/g-C3N4	Ultrasound-assisted route	[catalyst]: 20 mg, [C ₀]: 20 mg/L, [time]: 180 min	500W Xenon lamp	Tetracycline	89%	5
Graphene oxide/magnetite/c erium-doped titania	Sol-gel and Hummers method	[catalyst]: 50 mg, [C ₀]: 25 mg/L, [time]: 60 min	300W Xe lamp	Tetracycline	82.92%	6
CdS-TNs/rGO nanocomposite	one-pot hydrothermal and impregnation- calcination method	[catalyst]: 75 mg, [C ₀]: 30 mg/L, [time]: 90 min	UV light	Tetracycline	84%	7
Gd-doped TiO ₂ nanoparticles	Sol-gel method	[catalyst]: 25 mg, [C ₀]: 25 mg/L, [pH]: 7, [time]: 300 min	Visible light	Methylene blue dye	46.5%	8
Gd-doped BiFeO ₃ nanoparticles	Sol-gel method	[catalyst]: 500 mg, [C ₀]: 5 mg/L, [time]: 270 min	Visible light	Rhodamine dye	42.1	9
TiO ₂ nanoparticles	Green synthesis using <i>Basil</i> leaves	[catalyst]: 25 mg, [C ₀]: 10 mg/L, [pH]: 5, [time]: 150 min,	Solar light	Amoxicillin	91.63%	10
Boron and cerium-doped TiO ₂ nanoparticles	EDTA-citrate method	[catalyst]: 1 g/L, [C ₀]: 10 mg/L, [time]: 180 min, 90 min,	Solar light	ciprofloxacin and norfloxacin	93.16%, 93% and 93.22%, 93.6%	11
Gd, Fe and N co- doped TiO2 nanomaterials	Sol-gel method	[catalyst]: 0.1 g, [C ₀]: 10 mg/L, [time]: 180 min, 90 min,	500W Xenon lamp	Methylene blue dye	97.4%	12
AgBreTiO2- Palygorskite	-	[catalyst]: 0.5 g/L,[C0]: 10 mg/L, [pH]: 9, [time]: 90 min	Visible light	Tetracycline hydrochloride	90%	13
Gd-doped TiO ₂	Green synthesis via hydrothermal method	[catalyst]: 22.50 mg, [C ₀]: 18.25 mg/L, [pH]: 5.02, [time]: 80 min	Visible light	Tetracycline	93.08%	Present work

References

- 1 M. Mohammadi, S. Sabbaghi, M. Binazadeh, S. Ghaedi and H. Rajabi, *Chemosphere*, 2023, **336**, 139311.
- 2 M. Esfandiaribayat, M. Binazadeh, S. Sabbaghi, M. Mohammadi, S. Ghaedi and H. Rajabi, *Sci. Rep.*, 2024, **14**, 1–16.

- 3 Z. Shi, Y. Zhang, X. Shen, G. Duoerkun, B. Zhu, L. Zhang, M. Li and Z. Chen, *Chem. Eng. J.*, 2020, **386**, 124010.
- H. Shahabinejad, M. Binazadeh, F. Esmaeilzadeh, F. Hashemi and S. M. Mousavi, *Sci. Rep.*, 2024, 14, 1–15.
- 5 Z. Zhu, H. Xia and H. Li, *Solid State Sci.*, 2023, **139**, 107164.
- M. Cao, P. Wang, Y. Ao, C. Wang, J. Hou and J. Qian, J. Colloid Interface Sci., 2016,
 467, 129–139.
- F. Firouzi, A. Ebrahimian Pirbazari, F. Esmaeili Khalil Saraei, F. S. Tabatabai-Yazdi, A.
 Esmaeili and Z. Khodaee, *J. Environ. Chem. Eng.*, DOI:10.1016/j.jece.2021.106795.
- 8 M. Ben Chobba, M. Messaoud, M. L. Weththimuni, J. Bouaziz, M. Licchelli, F. De Leo and C. Urzì, *Environ. Sci. Pollut. Res.*, 2019, **26**, 32734–32745.
- 9 N. Zhang, D. Chen, F. Niu, S. Wang, L. Qin and Y. Huang, *Sci. Rep.*, 2016, 6, 1–11.
- 10 F. A. Sulaiman and A. I. Alwared, Desalin. Water Treat., 2022, 262, 312–322.
- 11 M. Manasa, P. R. Chandewar and H. Mahalingam, *Catal. Today*, 2021, 375, 522–536.
- W. Li, L. Xie, L. Zhou, J. Ochoa-Lozano, C. Li and X. Chai, *Ceram. Int.*, 2020, 46, 24744–24752.
- Y. Shi, Z. Yan, Y. Xu, T. Tian, J. Zhang, J. Pang, X. Peng, Q. Zhang, M. Shao, W. Tan,
 H. Li and Q. Xiong, *J. Clean. Prod.*, 2020, 277, 124021.