Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Pyridinium Based Carboxyl Functionalized Porphyrin: An Easy Gateway to Afford Substituted Benzyl Aryl Ethers

Authors: Vijay Shivaji Patil^a, and Pundlik Rambhau Bhagat^{a*}

a. Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India.

*Corresponding author e-mail address: drprbhagat111@gmail.com (Dr. Pundlik Rambhau Bhagat)

Supplementary Information

Sr	Contents	Page	Fig. NO.
No.		No.	
1.	Table S. 1 Literature report	5	
2.	Synthesis Route of pyridinium-based carboxyl-	5-7	
	functionalised porphyrin photocatalyst		
3.	Scheme. S1 Preparation of (1A	5	
4.	Scheme. S2 Preparation of (1B)	6	
5.	Scheme. S3 Overall scheme of PCFPc photocatalyst.	7	
6.	Fig. S1. ¹ H NMR Spectrum of PCFPc photocatalyst	8	S1
7.	Fig. S2. ¹³ C NMR Spectrum of PCFPc photocatalyst	8	S2
8.	Fig. S3. CV of PCFPc photocatalyst	9	S3
9.	Table S.2	9	
10.	Fig. S4. a. SEM images of PCFPc photocatalyst b. EDAX of PCFPc photocatalyst	10	S4
11.	Fig. S5. a) XPS Survey of PCFPc Photocatalyst b) High	10	S5
	resolve XPS Spectrum of C1s of PCFPc photocatalyst c)		
	High resolve XPS Spectrum of O1s of PCFPc		
	photocatalyst d) High-resolve XPS Spectrum of N1s of		
	PCFPc photocatalyst e) High-resolve XPS Spectrum of		
	Cl2n of PCEPc photocatalyst		
10	Fig. S6. Lab made relationsation (Outer View and Inner	11	56
12.	View)	11	50
13	Fig. S7_DEPT-135 NMR Spectrum of 4-((4-	11	\$7
15.	nitrobenzyl)oxy)benzaldehyde	11	57
14.	Fig. S8. FT-IR Spectrum of 4-((4-	12	S8
	nitrobenzyl)oxy)benzaldehyde.		
15	Fig. S9. HB-MS Spectrum of $A_{-}(A_{-})$	12	50
15.	nitrohonzyl)ovy)honzoldohydo	12	
16	T' C10 UD MCC (T	10	C10
16.	Fig. S10. HR-MS Spectrum of Tempo	13	<u>\$10</u>
17.	Fig. S11. ¹ H NMR spectrum of (E)-4-((pyridine-4-	13	SII
10	ylimino) metnyl) benzaldenyde (IA)	1.4	612
18.	rig. S12. "C NMR spectrum of (E)-4-((pyridine-4-	14	512
10	Fig. S13 ET IP spectrum of (E) 4 ((pyridine 4 ylimino)	1/	\$13
17.	methyl) benzaldehyde (1A)	17	515
20	Fig S14 HR-MS spectrum of (E)-4-((pyridine-4-	15	S14
20.	vlimino) methyl) benzaldehyde (1A)	10	511
21.	Fig S15. ¹ H NMR spectrum of 4-((4-	15	S15
	formylbenzylidene)amino)-1-sulfopyridin-1-ium		_
	chloride(1B)		
22.		16	S16
	Fig S16. ¹³ C NMR spectrum of 4-((4-		
	formylbenzylidene)amino)-1-sulfopyridin-1-ium		
	chloride(1B)		~15
23.	Fig. S17. FT-IR spectrum 1-(carboxymethyl)-4-((4-	16	S17
	tormylbenzylidene)amino)pyridin-1-ium chloride (1B)		

24.	Fig. S18. HR-MS spectrum of 1-(carboxymethyl)-4-((4-	17	S18
	formylbenzylidene)amino)pyridin-1-ium chloride (1B)		
25.	Fig. S19. ¹ H NMR spectrum of 4-((4-	17	S19
	nitrobenzyl)oxy)benzaldehyde		
26.	Fig. S20. ¹³ C NMR spectrum of 4-((4-	18	S20
	nitrobenzyl)oxy)benzaldehyde		
27.	Fig. S21. ¹ H NMR spectrum of 1-nitro-4-((4-	18	S21
	nitrobenzyl)oxy)benzene		
28.	Fig S22. ¹³ C NMR spectrum of 1-nitro-4-((4-	19	S22
	nitrobenzyl)oxy)benzene		
29.	Fig. S23. ¹ H NMR spectrum of 1-nitro-3-((4-	19	S23
	nitrobenzyl)oxy)benzene		
30.	Fig. S24. DEPT-135 spectrum of 1-nitro-3-((4-	20	S24
	nitrobenzyl)oxy)benzene		
31.	Fig. S25. ¹ H NMR spectrum of 1-methoxy-4-((4-	20	S25
	nitrobenzyl)oxy)benzene		
32.	Fig. S26. ¹³ C NMR spectrum of 1-methoxy-4-((4-	21	S26
	nitrobenzyl)oxy)benzene		
33.	Fig. S27. ¹ H NMR spectrum of 4-((4-	22	S27
	nitrobenzyl)oxy)aniline		
34.	Fig S28. ¹³ C NMR spectrum of 4-((4-	22	S28
	nitrobenzyl)oxy)aniline		
35.	Fig. S29. ¹ H NMR spectrum of 1-methoxy-4-((4-	23	S29
	nitrophenoxy)methyl)benzene		
36.	Fig. S30. ¹³ C NMR spectrum of 1-methoxy-4-((4-	23	S30
	nitrophenoxy)methyl)benzene		
37.	Fig. S31. ¹ H NMR spectrum of 1-((4-	24	S31
	methoxybenzyl)oxy)-3-nitrobenzene		
38.	Fig. S32. ¹³ C NMR spectrum of 1-((4-	24	S32
	methoxybenzyl)oxy)-3-nitrobenzene		
39.	Fig. S33. ¹ H NMR spectrum of 4-((4-	25	S33
	methoxybenzyl)oxy)benzonitrile		
40.	Fig. S34. ¹³ C NMR spectrum of 4-((4-	25	S34
	methoxybenzyl)oxy)benzonitrile		
41.	Fig. S35. ¹ H NMR spectrum of 1-methoxy-4-((4-	26	S35
	methoxybenzyl)oxy)benzene		
42.	Fig. S36. ¹³ C NMR spectrum of 1-methoxy-4-((4-	26	S36
	methoxybenzyl)oxy)benzene		
43.	Fig. S37. ¹ H NMR spectrum of 4-((4-	27	S37
	chlorobenzyl)oxy)benzaldehyde		
44.	Fig. S38. ¹³ C NMR spectrum of 4-((4-	27	S38
	chlorobenzyl)oxy)benzaldehyde		
45.	Fig. S39. ¹ H NMR spectrum of 4-((4-	28	S39
	chlorobenzyl)oxy)benzonitrile		
46.	Fig. S40. ¹ H NMR spectrum of 1-chloro-4-((4-	28	S40
	nitrophenoxy)methyl)benzene		
47.	Fig. S41. ¹³ C NMR spectrum of 1-chloro-4-((4-	29	S41
	nitrophenoxy)methyl)benzene		

48.	Fig. S42. ¹ H NMR spectrum of 1-chloro-4-((4-	29	S42		
	methoxyphenoxy)methyl)benzene				
49.	Fig. S43. ¹³ C NMR spectrum of 1-chloro-4-((4-	30	S43		
	methoxyphenoxy)methyl)benzene				
50.	Fig. S44. DEPT-135 spectrum of 1-chloro-4-((4-	30	S44		
	methoxyphenoxy)methyl)benzene				
51.	Fig. S45. ¹ H NMR spectrum of 4-	31	S45		
	(benzyloxy)benzaldehyde				
52.	Fig. S46. ¹ NMR spectrum of 4-(benzyloxy)benzaldehyde	31	S46		
53.	Fig. S47. DEPT-135 spectrum of 4-	32	S47		
	(benzyloxy)benzaldehyde				
54.	Fig. S48. ¹ H NMR spectrum of 4-	32	S48		
	(benzyloxy)benzaldehyde				
55.	Fig. S49. ¹ H NMR spectrum of 1-(benzyloxy)-4-	33	S49		
	nitrobenzene				
56.	Fig. S50. ¹ H NMR spectrum of 1-(benzyloxy)-4-	33	S50		
	mithoxybenzene				
57.	Fig. S51. ¹³ C NMR spectrum of 1-(benzyloxy)-4-	34	S51		
	mithoxybenzene				
58.	Fig. S52. ¹ H NMR spectrum of 1-(benzyloxy)-3-	34	S52		
	mithoxybenzene				
59.	Fig. S53. ¹³ C NMR spectrum of 1-(benzyloxy)-3-	35	S53		
	mithoxybenzene				
60.	Fig. S54. ¹ H NMR spectrum of 4-(benzyloxy)aniline	35	S54		
61.	Fig. S55. ¹³ C NMR spectrum of 4-(benzyloxy)aniline	36	S55		
62.	Fig. S56. ¹ H NMR spectrum of (benzyloxy)benzene	36	S56		
63.	Fig. S57. ¹³ C NMR spectrum of (benzyloxy)benzene	37	S57		
64.	Fig. S58. Recyclability FT-IR Spectrum of PCFPc	37	S58		
	photocatalyst				
65.	Table S3. Spectral data	38-41			
66.	Fig. S59. Leaching test of PCFPc photocatalyst41S59				
67.	Fig. S60. HR-MS Spectrum of of PCFPc photocatalyst	42	S60		

2.3 Synthesis Route of pyridinium-based carboxyl-functionalised porphyrin photocatalyst

2.3.1 Preparation of 4-((pyridin-4-ylimino) methyl)benzaldehyde (1A)

Scheme. S1 Preparation of (1A)

Separately dissolve terephthalaldehyde (0.68 g, 5 mmol) and p-aminopyridine (0.475 g, 5 mmol) in a beaker with 10 mL THF, then transfer to a 50 mL RB flask. The solution was

refluxed for 45 hours with constant stirring. We subsequent stirred the resulting liquid nonstop for 26 hours to acquire the necessary yellow precipitate. The solid product was wash away with aqueous ethanol, earlier acetone (3 x 10 mL), and dried in a hot air oven. [1] The greater compound (1A) was well-known by 1H NMR. (SI Fig. S12, Pg.14) ¹³C NMR, (SI Fig. S13, Pg.14), FT-IR (SI Fig. S14, Pg.15) and HR-MS analysis (SI Fig. S15, Pg.15), (1.337 g) (Scheme 1). (Yield = 62%).

400 MHz, DMSO-d6: δ 10.02 (s, 1H), 8.07 (s, 1H), 7.97 (d, J = 8.00 Hz, 2H), 7.79 (d, J = 8.00 Hz, 2H), 7.35 (d, J = 6.80 Hz, 2H), 6.61 (d, J = 6.00 Hz, 2H).

100 MHz, DMSO-d₆: δ 193.54, 156.06, 151.18, 148.97, 140.21, 136.59, 130.46, 127.85, 109.47 ppm.

FT-IR (cm⁻¹): 1709.34, 1612.67, 1507.53, 1195.17.

2.3.2 Preparation of precursor of photocatalyst 1-(carboxymethyl)-4-((4-formylbenzylidene)amino)pyridin-1-ium chloride (1B)

Scheme. S2 Preparation of (1B)

The resultant intermediate 1A (1.051 g, 5 mmol) was carefully transferred into a 50 mL RB flask containing 10 mL chloroform and kept at freezing temperature with constant agitation. The resulting solution was progressively combined with chloroacetic acid (0.5825 g, 5 mmol) and refluxed for 42 hours. After the reaction was complete, the solvent was evaporated under decreased pressure to produce a viscous orange liquid. To remove unreacted substrates, the sticky ionic liquid precursor 1B was rinsed with acetone (2 x 10 mL) before being dried in the oven.^[2] The creation of compound was (1B) confirmed by ¹H NMR (SI Fig. S16, Pg.16) ¹³C NMR, (SI Fig. S17, Pg.16), FT-IR (SI Fig. S18, Pg.17) and HR-MS analysis (SI Fig. S19, Pg.17), Yielding 53.21% (0.878 g) (Scheme 2).

400 MHz, DMSO-d6: δ 10.14 (s, 1H), 8.43 (s, 1H), 8.21 (d, J = 8.00 Hz, 2H), 8.13 (d, J = 6.80 Hz, 2H), 8.07 (d, J = 9.60 Hz, 2H), 6.85 (d, J = 7.20 Hz, 2H), 5.04 (s, 2H). 100 MHz, DMSO-d6: δ 193.59, 174.54, 169.32, 160.32, 159.39, 144.41, 140.21, 140.07, 130.47, 109.20, 59.97.

2.3.3 Preparation of Porphyrin based photocatalyst (PCFPc) (C)

Using previously published material, we attempted to build a PCFPc photocatalyst. [2] Precursor 1B (1.3070 g, 4 mmol) was diluted in 5 mL acetic acid and transferred to a 100-mL RBF. Pyrrole (0.2683 g, 4 mmol) was mixed with 5 mL of acetic acid in a dropping funnel. The pyrrole solution was gradually added to the RBF while being continuously agitated, and the entire mixture heated up for 35–45 minutes. Shortly after the process of reaction finished, the resultant mixture was constantly agitated at a comfortable temperature for a period of 12 hours. The resultant substance was afterwards rinsed several times utilizing water until it tested negative on blue litmus paper as a medium, then with methanol and acetone (3 x 10 mL). To achieve the PCFPc photocatalyst (C), this dark brown powder form had been dried in an oven using hot air at 60°C during the requisite time. The formation of was demonstrated by several

spectral scrutiny (C) such as ¹H NMR (SI Fig. S1), Solid ¹³C NMR (Fig.S2) Comparative FT-IR of precursor 1B and photocatalyst (Manuscript Fig. 2, Pg.5), Hammett acidity (Manuscript Fig. 3, Pg.6), BET (Manuscript Fig. 4, Pg.7) UV- Visible Spectrum and Fluorescence Emission Spectrum (Manuscript Fig. 5, Pg.8), Powder XRD (Manuscript Fig. 6, Pg.9), Electrochemical cyclic voltammetry (Fig. S7), SEM and EDAX (Fig. 8), XPS (Fig. 9), (HRMS(M+1)= 1266. Yield 47.03% (2.756 g) (Scheme 1).

Fig. S1. ¹H NMR Spectrum of PCFPc photocatalyst

Fig. S2. ¹³C NMR Spectrum of PCFPc photocatalyst

Fig. S3. CV of PCFPc photocatalyst

Table S.2

Electrochemical onset potentials and electronic energy levels of PCFPc Photocatalyst.

	1		0,			
Compound	E_{ox}^{onset}/V	E ^{onset} /V	E _{HOMO} /eV	E _{LUMO} /eV	$\mathbf{E}_{g}^{ec}/\mathbf{V}$	
PCFPc	1.18	-0.86	6.223	4.213	2.01	

 $E_{HOMO} = - [E_{ox \ vs. Fc} + 5.043] \text{ eV}, E_{LUMO} = - [E_{red \ vs. Fc} + 5.043] \text{ eV}, E_{g}^{ec}/V = E_{LUMO} - E_{HOMO}$

Fig. S4. a. SEM images of PCFPc photocatalyst b. EDAX of PCFPc photocatalyst

Fig. S5. a) XPS Survey of PCFPc Photocatalyst b) High resolve XPS Spectrum of C1s of PCFPc photocatalyst c) High resolve XPS Spectrum of O1s of PCFPc photocatalyst d) High-resolve XPS Spectrum of N1s of PCFPc photocatalyst e) High-resolve XPS Spectrum of Cl2p of PCFPc photocatalyst.

Fig. S6. Lab-made photoreactor (Outer View and Inner View)

Fig. S7. DEPT-135 NMR Spectrum of 4-((4-nitrobenzyl)oxy)benzaldehyde

Fig. S8. FT-IR Spectrum of 4-((4-nitrobenzyl)oxy)benzaldehyde

Fig. S9. HR-MS Spectrum of 4-((4-nitrobenzyl)oxy)benzaldehyde

Fig. S10. HR-MS Spectrum of Tempo

Fig. S11. ¹H NMR spectrum of (E)-4-((pyridine-4-ylimino) methyl) benzaldehyde (1A)

Fig. S12. ¹³C NMR spectrum of (E)-4-((pyridine-4-ylimino) methyl) benzaldehyde (1A)

Fig. S13. FT-IR spectrum of (E)-4-((pyridine-4-ylimino) methyl) benzaldehyde (1A)

Fig. S14. HR-MS spectrum of (E)-4-((pyridine-4-ylimino) methyl) benzaldehyde (1A

Fig. S15. ¹H NMR spectrum of 4-((4-formylbenzylidene)amino)-1-sulfopyridin-1-ium chloride(1B)

Fig.S16. ¹³C NMR spectrum of 4-((4-formylbenzylidene)amino)-1-sulfopyridin-1-ium chloride(1B)

Fig. S17. FT-IR spectrum 1-(carboxymethyl)-4-((4-formylbenzylidene)amino)pyridin-1-ium chloride (1B)

Fig. S18. HR-MS spectrum of 1-(carboxymethyl)-4-((4-formylbenzylidene)amino)pyridin-1ium chloride (1B)

Fig. S19. ¹H NMR spectrum of 4-((4-nitrobenzyl)oxy)benzaldehyde

Fig. S20. ¹³C NMR spectrum of 4-((4-nitrobenzyl)oxy)benzaldehyde

Fig. S21. ¹H NMR spectrum of 1-nitro-4-((4-nitrobenzyl)oxy)benzene

Fig S22. ¹³C NMR spectrum of 1-nitro-4-((4-nitrobenzyl)oxy)benzene

Fig. S23. ¹H NMR spectrum of 1-nitro-3-((4-nitrobenzyl)oxy)benzene

Fig. S24. DEPT-135 spectrum of 1-nitro-3-((4-nitrobenzyl)oxy)benzene

Fig. S25. ¹H NMR spectrum of 1-methoxy-4-((4-nitrobenzyl)oxy)benzene

Fig. S26. ¹³C NMR spectrum of 1-methoxy-4-((4-nitrobenzyl)oxy)benzene

Fig. S27. ¹H NMR spectrum of 4-((4-nitrobenzyl)oxy)aniline

Fig. S28. ¹³C NMR spectrum of 4-((4-nitrobenzyl)oxy)aniline

Fig. S29. ¹H NMR spectrum of 1-methoxy-4-((4-nitrophenoxy)methyl)benzene

Fig. S30. ¹³C NMR spectrum of 1-methoxy-4-((4-nitrophenoxy)methyl)benzene

Fig. S31. ¹H NMR spectrum of 1-((4-methoxybenzyl)oxy)-3-nitrobenzene

Fig. S32 ¹³C NMR spectrum of 1-((4-methoxybenzyl)oxy)-3-nitrobenzene

Fig. S33. ¹H NMR spectrum of 4-((4-methoxybenzyl)oxy)benzonitrile

Fig. S34. ¹³C NMR spectrum of 4-((4-methoxybenzyl)oxy)benzonitrile

Fig. S35. ¹H NMR spectrum of 1-methoxy-4-((4-methoxybenzyl)oxy)benzene

Fig. S36. ¹³C NMR spectrum of 1-methoxy-4-((4-methoxybenzyl)oxy)benzene

Fig. S37. ¹H NMR spectrum of 4-((4-chlorobenzyl)oxy)benzaldehyde

Fig. S38. ¹³C NMR spectrum of 4-((4-chlorobenzyl)oxy)benzaldehyde

Fig. S39. ¹H NMR spectrum of 4-((4-chlorobenzyl)oxy)benzonitrile

Fig. S40. ¹H NMR spectrum of 1-chloro-4-((4-nitrophenoxy)methyl)benzene

Fig. S41. ¹³C NMR spectrum of 1-chloro-4-((4-nitrophenoxy)methyl)benzene

Fig. S42. ¹H NMR spectrum of 1-chloro-4-((4-methoxyphenoxy)methyl)benzene

Fig. S43. ¹³C NMR spectrum of 1-chloro-4-((4-methoxyphenoxy)methyl)benzene

Fig. S44. DEPT-135 spectrum of 1-chloro-4-((4-methoxyphenoxy)methyl)benzene

Fig. S45. ¹H NMR spectrum of 4-(benzyloxy)benzaldehyde

Fig. S46. ¹NMR spectrum of 4-(benzyloxy)benzaldehyde

Fig. S47. DEPT-135 spectrum of 4-(benzyloxy)benzaldehyde

Fig. S48. ¹H NMR spectrum of 4-(benzyloxy)benzaldehyde

Fig. S49. ¹H NMR spectrum of 1-(benzyloxy)-4-nitrobenzene

Fig. S50. ¹H NMR spectrum of 1-(benzyloxy)-4-mithoxybenzene

Fig. S51. ¹³C NMR spectrum of 1-(benzyloxy)-4-mithoxybe

Fig. S52. ¹H NMR spectrum of 1-(benzyloxy)-3-mithoxybenzene

Fig. S53. ¹³C NMR spectrum of 1-(benzyloxy)-3-mithoxybenzene

Fig. S54. ¹H NMR spectrum of 4-(benzyloxy)aniline

Fig. S55. ¹³C NMR spectrum of 4-(benzyloxy)aniline

Fig. S56. ¹H NMR spectrum of (benzyloxy)benzene

Fig. S57. ¹³C NMR spectrum of (benzyloxy)benzene

Fig. S58. Recyclability FT-IR Spectrum of PCFPc photocatalyst

Table S3. Spectral data

Sr.	Code	Product	Spectral data
No			
1	2a	CHO O ₂ N	400 MHz, CDCl ₃ : δ 9.84 (s, 1H), 8.20 (d, J = 8.80 Hz, 2H), 7.80 (d, J = 8.80 Hz, 2H), 7.55 (d, J = 8.80 Hz, 2H), 7.02 (d, J = 8.80 Hz, 2H), 5.20 (s, 2H).
		(Manuscript Fig.3,4, Pg. 11)	¹³ C NMR 100 MHz, CDCl ₃ : δ190.70, 162.94, 147.80, 143.29, 132.10, 130.65, 127.68, 123.99, 115.10, 68.84 ppm.
2	2b	O ₂ N CHO	400 MHz, CDCl ₃ : δ 9.75 (s, 1H), 8.12 (d, J = 8.40 Hz, 2H), 7.71 (d, J = 8.80 Hz, 2H), 7.46 (d, J = 8.80 Hz, 2H), 6.93 (d, J = 8.40 Hz, 2H), 5.11 (s, 2H). ¹³ C NMR 100 MHz, CDCl ₃ : δ191.20, 163.44, 148.31, 143.80, 132.61, 131.15, 128.18, 124.50, 115.60, 69.35 ppm.
3	2c	O ₂ N NO ₂	400 MHz, CDCl3: δ 8.15 (d, J = 8.68 Hz, 2H), 8.12 (d, J = 9.00 Hz, 2H), 7.47 (d, J = 7.12 Hz, 2H), 7.45 (d, J = 9.68 Hz, 2H), 4.77(s, 2H). 100 ¹³ C NMR MHz, CDCl ₃ : δ 161.21, 148.16, 141.41, 129.61, 127.01, 124.96, 123.76, 64.03 ppm.
4	2d	O ₂ N NO ₂	400 MHz, CDCl ₃ : δ 8.26 (s, 1H), 8.06 (d, J = 8.00 Hz, 2H), 7.74 (d, J = 7.20 Hz, 2H), 7.35 (t, J = 8.00 Hz, 3H), 7.19 (d, J = 8.80 Hz, 2H), 4.51 (s, 2H).
5	2e	O ₂ N	400 MHz, CDCl ₃ : δ 8.10 (d, J = 6.80 Hz, 2H), 7.45 (d, J = 7.20 Hz, 2H), 7.21 (d, J = 8.80 Hz, 2H), 6.82 (d, J = 8.40 Hz, 2H), 4.50 (s, 2H), 3.74 (s, 3H). ¹³ C NMR 100 MHz, CDCl ₃ : δ 160.82, 148.80, 147.01, 145.02, 129.06, 126.94, 123.59, 116.48, 63.63, 60.66 ppm.
6	2f		400 MHz, CDCl3: δ 8.03 (d, J = 6.32 Hz, 2H), 7.49 (d, J = 9.12 Hz, 2H), 7.35 (d, J =

		NH ₂	7.16 Hz, 2H), 7.25 (d, J = 6.76 Hz, 2H), 5.25 (s, 2H), 4.56(s, 2H).
		0 ₂ N	100 MHz, DMSO-d ₆ : δ 166.08, 142.99, 136.61, 133.81, 130.56, 128.48, 127.07, 126.91, 63.50 ppm.
7	2g	NO ₂	400 MHz, CDCl ₃ : δ 8.13 (d, J = 8.40 Hz, 2H), 7.45 (d, J = 8.80 Hz, 2H), 7.29 (d, J = 8.80 Hz, 2H), 6.70 (d, J = 9.20 Hz, 2H), 4.75 (s, 2H), 3.70 (s, 3H).
			¹³ C NMR 100 MHz, CDCl ₃ : δ 158.69,148.20, 147.30, 132.24, 127.00, 123.74, 115.73, 112.82, 64.01, 55.45 ppm.
8	2h	NO ₂	400 MHz, CDCl3: δ 8.14 (d, J = 8.72 Hz, 2H), 7.45 (d, J = 8.80 Hz, 2H), 7.06 (t, J = 7.96 Hz, 1H), 7.01 (s, 1H), 6.98 (d, J = 6.08 Hz, 1H), 6.74 (d, J = 6.16 Hz, 2H), 4.76 (s, 2H), 3.71 (s, 3H).
			¹³ C NMR 100 MHz, CDCl ₃ : δ 160.36, 148.19, 147.30, 130.55, 127.00, 123.78, 122.83, 117.16, 113.07, 64.01, 55.45 ppm.
9	2i	O CN	400 MHz, CDCl ₃ : δ 8.10 (d, J = 7.20 Hz, 2H), 7.43 (d, J = 8.00 Hz, 2H), 7.01 (d, J = 8.00 Hz, 2H), 6.55 (d, J = 8.40 Hz, 2H), 4.70 (s, 2H), 3.52 (s, 3H). ¹³ C NMR 100 MHz, CDCl ₃ : δ 169.94, 147 20 145 29 142 51 127 20 125 25
			147.30, 143.28, 143.51, 127.30, 125.25, 121.84, 115.14, 114.71, 61.79, 58.89 ppm.
10	2j		400 MHz, CDCl ₃ : δ 7.35 (d, J = 8.80 Hz, 2H), 7.24 (d, J = 8.40 Hz, 2H), 6.85 (d, J = 8.80 Hz, 2H), 6.76 (d, J = 8.80 Hz, 2H), 4.54 (s, 2H), 3.76 (s, 3H), 3.73 (s, 3H).
			¹³ C NMR 100 MHz, CDCl ₃ : δ 158.91 158.57, 146.42, 141.26, 133.30, 128.59, 124.91, 113.78, 64.35, 60.59, 55.17 ppm.
11	2k	СНО	400 MHz, CDCl3: δ 9.89 (s, 1H), 8.12 (d, J = 8.64 Hz, 2H), 7.75 (d, J = 8.44 Hz, 2H), 7.46 (d, J = 6.64 Hz, 2H), 7.44 (d, J = 6.68 Hz, 2H), 4.76 (s, 2H).
			¹³ C NMR 100 MHz, CDCl ₃ : δ 191.07, 162.84, 148.34, 141.03, 134.66, 130.95, 129.48, 127.00, 123.71, 63.95 ppm.

12	21	CI CN	400 MHz, CDCl ₃ : δ 7.94 (d, J = 8.40 Hz, 2H), 7.29 (d, J = 8.00 Hz, 2H), 6.97 (d, J = 8.80 Hz, 2H), 6.62 (d, J = 8.80 Hz, 2H), 4.64 (s, 2H).
13	2m	CI NO2	400 MHz, CDCl3: δ 7.38 (d, J = 6.80 Hz, 2H), 7.34 (d, J = 7.20 Hz, 2H), 7.19 (d, J = 8.80 Hz, 2H), 6.79 (d, J = 8.80 Hz, 2H), 4.70 (s, 2H). ¹³ C NMR 100 MHz, CDCl ₃ : δ 161.10, 145.42, 140.93, 132.03, 128.58, 127.04,
			116.87, 110.29, 65.23 ppm.
14	2n		400 MHz, CDCl3: δ 7.23 (d, J = 8.40 Hz, 2H), 7.12 (d, J = 8.80 Hz, 2H), 6.84 (d, J = 8.40 Hz, 2H), 6.74 (d, J = 8.80 Hz, 2H), 4.55 (s, 2H), 3.75 (s, 3H). ¹³ C NMR 100 MHz, CDCl ₃ : δ 157.54,
			153.67, 131.23, 127.78, 127.28, 123.05, 115.29, 112.39, 63.03, 53.70 ppm
15	20	СНО	400 MHz, CDCl3: δ 9.81 (s, 1H), 7.76 (d, J = 8.72 Hz, 2H), 7.35 (t, J = 8.12 Hz, 3H), 7.28 (d, J = 6.76 Hz, 2H), 7.00 (d, J = 8.72 Hz, 2H), 5.07 (s, 2H). ¹³ C NMR 100 MHz, CDCl ₃ : δ 190.83, 163.75, 135.96, 132.03, 130.14, 128.76, 128.36, 127.51, 115, 17, 70.20 ppm
16	2p	СНО	$\begin{array}{l} 400 \text{ MHz, CDCl3: } \delta 9.73 \text{ (s, 1H), 7.68 (d, J)} \\ = 8.80 \text{ Hz, 2H), 7.26 (t, J = 8.40 \text{ Hz, 3H),} \\ 7.20 \text{ (d, J = 6.80 \text{ Hz, 2H), 6.92 (d, J = 8.80 \text{ Hz, 2H), 5.00 (s, 2H).}} \end{array}$
17	2q	NO ₂	400 MHz, CDCl3: δ 7.85 (d, J = 6.40 Hz, 2H), 7.50 (d, J = 7.60 Hz, 2H), 7.45 (t, J = 7.20 Hz, 3H), 7.22 (d, J = -6.40 Hz, 2H), 4.77 (s, 2H).
18	2r		400 MHz, CDCl3: δ 7.63 (t, J = 6.64 Hz, 3H), 7.57 (d, J = 6.76 Hz, 2H), 7.37 (d, J = 8.80 Hz, 2H), 6.85 (d, J = 8.72 Hz, 2H), 4.90 (s, 2H), 3.63 (s, 3H). ¹³ C NMR 100 MHz, CDCl ₃ : δ 161.23, 144.99, 141.01, 129.15, 128.58, 127.06, 123.22, 116.49, 65.06, 60.63 ppm.

19	2s		400 MHz, CDCl3: δ 7.39 (d, J = 10.68 Hz, 2H), 7.34 (t, J = 8.60 Hz, 2H), 7.19 (t, J = 7.80 Hz, 2H), 7.13 (s, 1H), 6.89 (d, J = 8.04 Hz, 2H), 4.68 (s, 2H), 3.81 (s, 3H). ¹³ C NMR 100 MHz, CDCl ₃ : δ 164.77, 158.72, 139.34, 128.94, 126.84, 125.36, 122.15, 115.55, 111.44, 63.32, 53.74 ppm.
20	2t	NH ₂	 400 MHz, CDCl3: δ 7.29 (d, J = 8.40 Hz, 2H), 7.22 (t, J = 8.80 Hz, 3H), 7.01 (d, J = 8.40 Hz, 2H), 6.51 (d, J = 8.40 Hz, 2H), 5.28 (s, 2H), 4.59 (s, 2H). ¹³C NMR 100 MHz, CDCl₃: δ 161.68, 145.17, 141.18, 136.10, 129.20, 127.16, 123.25, 116.79, 64.77 ppm.
21	2u		400 MHz, CDCl3: δ 7.62 (t, J = 6.40 Hz, 2H), 7.15 (t, J = 7.60 Hz, 1H), 7.08 (d, J = 7.20 Hz, 2H), 6.96 (t, J = 7.60 Hz, 3H), 6.90 (d, J = 6.00 Hz, 2H), 4.90 (s, 2H). ¹³ C NMR 100 MHz, CDCl ₃ : δ 166.49, 136.06, 133.75, 133.05, 130.21, 129.72, 128.61, 128.18, 66.72 ppm.

Fig. S59. Leaching test of PCFPc photocatalyst

Fig. S60. HR-MS Spectrum of of PCFPc photocatalyst

References:

[1] V. S. Patil, P. R. Bhagat, *Catal Letters* **2024**, DOI 10.1007/s10562-024-04613-1.

[2] V. S. Patil, B. C. Mataghare, R. G. Maske, P. R. Yadav, V. D. Channe, K. R. Balinge, V. B.

Khajone, D. S. Patle, P. R. Bhagat, Energy Convers Manag 2024, 319, DOI

10.1016/j.enconman.2024.118939.