Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

COPPER(II) COMPLEXES BASED ON 5-METHYL-1H-TETRAZOLE AND 2,2'-BIPYRIDINE, 1,10-PHENATHROLINE DERIVATIVES: SYNTHESIS, CRYSTAL STRUCTURES AND EXTENDED CYTOTOXICITY STUDY

Yu.A. Golubeva^a, K.S. Smirnova^a, L.S. Klyushova^b, A.S. Berezin^a, E.V. Lider ^a

^aNikolaev Institute of Inorganic Chemistry, SB RAS, 3, Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia

^bInstitute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine (FRC FTM), 2/12 Timakova str., 630060, Novosibirsk, Russia

^{III}E-mail: lisalider@gmail.com, +7-383-316-51-43, fax +7-383-330-94-89

Electronic Supplementary Information

Bond	1	1	2	Boi	nd	3	Bo	nd	3 a
Cu–N1 2.0		6(18)	2.0295(13)	Cu–N1		2.030(3)	Cu–N1		2.023(4)
Cu–N2 2.035		2(18)	2.0445(13) Cu–N2		N2	2.027(3)	Cu-	-N2	2.040(5)
Cu–N3 1.985		6(18)	1.9824(13)		u–N3 1.988(4)		Cu–N4		1.989(5)
Cu–N8	2.003	9(18)	1.9974(13)	Cu–N7		2.001(3)	Cu-	-N7	2.005(5)
Cu–N9	2.208	5(18)	2.2028(14)	i) Cu–N8		2.217(3)	Cu-	-N8	2.179(5)
Angle		1	2	Angle		3	An	gle	3 a
N1–Cu–N2	-Cu-N2 79.88(7)		80.90(5)	N1–Cu–N8		101.56(12)	N1-C	u–N8	102.48(18)
N1–Cu–N9	N1–Cu–N9 95.36(7		93.67(5)	N2–Cu–N1		79.94(13)	N1-C	u–N2	80.28(17)
N2–Cu–N9 99.68		8(7)	96.61(5)	N2–Cu–N8		96.79(13)	N2–Cu–N8		97.57(17)
N3–Cu–N1 168.99		99(7)	168.91(6)	N7–Cu–N1		92.88(13)	N4–Cu–N8		97.1(2)
N3–Cu–N2	2 93.70(7)		93.50(5)	N7–Cu–N2		163.26(13)	N4–Cu–N1		159.7(2)
N3–Cu–N9	94.5	3(7)	96.50(5)	N7-C1	u–N8	99.47(12)	N4-C	u–N2	91.86(19)
N3–Cu–N8	90.8	9(7)	91.61(5)	N3-C1	u—N1	159.95(14)	N4-C	u–N7	88.93(19)
N8–Cu–N1	92.2	8(7)	91.14(5)	N3-C1	u–N2	92.06(14)	N7–C	u–N8	101.68(17)
N8–Cu–N2	160.0	07(7)	162.72(6)	N3-C1	u–N7	89.72(14)	N7–C	u–N1	92.39(18)
N8–Cu–N9	99.27(7)		99.21(5)	N3–Cu–N8		97.60(14)	N7–C	u–N2	160.49(19)
Bond			3 b		Angle				3b
Cu1–N	1		2.029(4)		N1–Cu1–N2		7	9.91(17)	
Cu1–N8			2.014(4)		N1-Cu1-N20		90.33(17)		0.33(17)
Cu1–N2			2.070(5)		N8–Cu1–N1			92.06(17)	
Cu1–N20			2.195(5)		<u>N8–Cu1–N2</u>		15		58.52(18)
Cu1–N3			1.990(4)		N8-Cu1-N20) 104		04.77(18)
Cu2–N10			2.021(4)		N2-Cu1-N20			95.23(17)	
Cu2–N11			2.064(4)		N3-Cu1-N1			164.13(19)	
Cu2–N17			2.168(4)		N3–Cu1–N8			90.62(19)	
Cu2–N13			1.986(4)		N3–Cu1–N2		92.03(18)		
Cu2–N12			2.038(5)		N3-Cu1-N20		104.10(19)		04.10(19)
]	N10-Cu2-N1	1	9	3.95(17)
				<u> </u>		N10-Cu2-N17		105.05(18)	
					<u>N10–Cu</u>		2	1	60.8(2)
]	11–Cu2–N17		96.53(17)	
]	N13-Cu2-N10		88.44(19)	
]	N13-Cu2-N1	<u> </u>	1	57.5(2)
]	N13-Cu2-N17	7	10	04.48(19)
]	N13-Cu2-N12	2	9	1.10(19)
]	N12-Cu2-N1	1	7	9.38(18)
					1	N12-Cu2-N17	7	9	3.69(19)

Table S1. The bond lengths and angles in the obtained complexes

Compound	1	2	3	3a	3b
Empirical formula	$C_{28}H_{28}Cu_2N_{20}$	$C_{32}H_{28}Cu_2N_{20}$	$C_{36}H_{40}Cu_2N_{20}O_2$	$C_{40}H_{48}Cu_2N_{20}O_2$	$C_{72}H_{76}Cu_4N_{40}O_2$
Formula weight	771.78	819.79	911.96	968.08	1787.88
Temperature/K	150	150	300	150	293
Crystal system	triclinic	triclinic	triclinic	triclinic	triclinic
Space group	P-1	P-1	P-1	P-1	P-1
a/Å	8.6567(7)	8.7700(5)	11.0916(13)	10.987(3)	11.224(2)
b/Å	9.9109(8)	10.7512(7)	11.1446(12)	11.354(3)	14.614(3)
c/Å	10.7222(8)	10.7578(6)	11.1875(10)	11.406(3)	14.652(3)
α/°	109.317(3)	107.668(2)	113.708(3)	100.136(7)	105.79(3),
β/°	110.058(3)	104.604(2)	97.123(3)	109.237(6)	101.79(3),
γ/°	96.050(3)	110.418(2)	118.018(3)	118.587(6)	112.04(3)
Volume/Å ³	790.23(11)	829.78(9)	1030.66(19)	1079.9(5)	2013.1(9)
Z	1	1	1	1	1
ρ _{calc} g/cm ³	1.622	1.641	1.469	1.489	1.475
µ/mm ⁻¹	1.404	1.342	1.09	1.047	1.12
Crystal	0.066 imes 0.048 imes	0.094 imes 0.058 imes	$0.12 \times 0.05 \times$	0.175 × 0.039 ×	$0.22 \times 0.05 \times$
size/mm ³	0.028	0.036	0.02	0.017	0.02
2\O range for data collection/°	4.398 to 63.066	4.338 to 63.086	4.496 to 55.76	4.274 to 52.882	3.076 to 56.614
	$-12 \le h \le 12, -$	$-12 \le h \le 12, -$	$-14 \le h \le 14, -$	$-13 \le h \le 13, -$	$-14 \le h \le 14, -$
Index ranges	$14 \le k \le 14, -15$	$15 \le k \le 15, -15$	$14 \le k \le 14, -14$	$14 \le k \le 14, -14$	$19 \le k \le 19, -19$
	$\leq l \leq 15$	$\leq l \leq 15$	$\leq l \leq 13$	$\leq l \leq 14$	≤1≤19
Reflections collected	22224	16623	14397	14190	19862
Independent reflections	$5273 [R_{int} = 0.0700, R_{sigma} = 0.0704]$	$5534 [R_{int} = 0.0330, R_{sigma} = 0.0409]$	$\begin{array}{c} 4895 \; [R_{int} = \\ 0.0592, \; R_{sigma} = \\ 0.0790] \end{array}$	$\begin{array}{c} 4345 \; [R_{int} = \\ 0.0940, \; R_{sigma} = \\ 0.1226] \end{array}$	9966 $[R_{int} = 0.1274, R_{sigma} = 0.1847]$
Restraints / parameters	0/228	0/246	0/278	0/303	0/543
Goodness-of-fit on F ²	1.026	1.040	1.030	1.049	1.025
Final R indexes	$R_1 = 0.0425,$	$R_1 = 0.0330,$	$R_1 = 0.0601,$	$R_1 = 0.0725,$	$R_1 = 0.0791,$
$[I \ge 2\sigma(I)]$	$wR_2 = 0.0782$	$wR_2 = 0.0732$	$wR_2 = 0.1499$	$wR_2 = 0.1701$	$wR_2 = 0.2001$
Final R indexes	$R_1 = 0.0720,$	$R_1 = 0.0421,$	$R_1 = 0.0897,$	$R_1 = 0.1323,$	$R_1 = 0.1375,$
[all data]	$wR_2 = 0.0887$	$wR_2 = 0.0773$	$wR_2 = 0.1639$	$wR_2 = 0.1967$	$wR_2 = 0.2443$
Largest diff. peak/hole / e Å ⁻³	0.54/-0.56	0.49/-0.43	0.65/-0.50	1.63/-0.76	0.78/-0.72
CCDC number	2424836	2424833	2424835	2424834	2424837

Table S2. Crystallographic data and structure refinement details for compounds 1-3b

Figure S1. The molecules packing as a result of the π -stacking for 1 (a), 2 (b), 3 (c), 3a (d) and 3b (e). Hydrogen atoms are not shown.

Figure S2. X-ray powder patterns for complexes 1-3.

Figure S3. IR spectra of complexes 1-3 registered in KBr pellets

Figure S4. Effect of HL and complexes **1-3** on the viability of A549 cells determined by dual staining with Hoechst 33342/propidium iodide after 48 hours of incubation.

Figure S5. Effect of HL and complexes **1-3** on the viability of Hep2 cells determined by dual staining with Hoechst 33342/propidium iodide after 48 hours of incubation.

Figure S6. Effect of HL and complexes **1-3** on the viability of MCF7 cells determined by dual staining with Hoechst 33342/propidium iodide after 48 hours of incubation.

Figure S7. Effect of complexes **1-3** on the viability of HepG2 cells determined by dual staining with Hoechst 33342/propidium iodide after 48 hours of incubation.

Figure S8. Effect of complexes **1-3** on the viability of HEK293A cells determined by dual staining with Hoechst 33342/propidium iodide after 48 hours of incubation.

Figure S9. Effect of HL and complexes **1-3** on the viability of MRC5 cells determined by dual staining with Hoechst 33342/propidium iodide after 48 hours of incubation.

Figure S10. Effect of complexes **1-3** on the viability of HepG2 spheroids (cell count and spheroid area) determined by dual staining with Hoechst 33342/propidium iodide after 48 hours of incubation.

Figure S11. Effect of complexes **1-3** on the viability of Hep2 cells determined by dual staining with Hoechst 33342/propidium iodide after 1 hour of incubation.

Figure S12. Total intracellular reactive oxygen species in HepG2 cells determined by fluorescent H₂DCFDA signal intensity. Green bars indicate intensity in cells incubated with complexes 1–3, red bars indicate H₂DCFDA intensity in positive control (cells incubated with 200 μ M H₂O₂).

Figure S13. Effect of complexes **1-3** on the viability of HepG2 cells determined by dual staining with Hoechst 33342/propidium iodide after 1 hour of incubation.