Enhanced Electrocatalytic Performance for Overall Water Splitting: Exploring Heterojunctions and Vacancy-Engineered Nanosheets

Dexin Yu,^{#a} Yifan Zhang,^{#a} Jun Wu,^{*a} Feng Zhang^{*a} and Fengyu Qu^a

^aKey Laboratory of Photochemical Biomaterials and Energy Storage

Materials, Harbin Normal University, Harbin 150025, P. R. China

*Corresponding authors: Feng Zhang (E-mail: zhangfeng@hrbnu.edu.cn)

and Jun Wu (wujun@hrbnu.edu.cn)

[#]These authors contributed equally to this work.

Fig. S1 The PXRD patterns (a), the variation of the d-place (b), the weight (Wt%) of each phase (c), the translate conversion of Co/Ni-ZIF NTs (d) in Co/Ni-ZIF NTs and its time transformed derivatives; and the surface areas comparison (e and f) among the Co/Ni-ZIF NTs and its main derivatives.

Fig. S2 The specific lattice planes (211) and (422) of Co/Ni-ZIF-67.

Fig. S3 SEM images of Co/Ni-LZ-24 (a and c) and Co/Ni-LZ-36 (b and d). SEM images of Co/Ni-LZ-24 (e) and Co/Ni-LZ-72 (f) NTs dispersed on silicon.

Fig. S4 The survey XPS spectra (a) and the high-resolution spectra of C

1s (b) and N 1s (c) in Co/Ni-ZIF and Co/Ni-LZ-t.

Fig. S5 The Mott-Schottky plots of Co/Ni-ZIF NTs (a), Co/Ni-LZ-t NTs(b to g) and Co/Ni@LDH(T) (h and i), respectively at different frequencies (100, 500 and 1000 Hz)

Fig. S6 EIS (**a**) and CV curves in a non-Faradaic region (**b-f**) of CC (**b**), Co/Ni-ZIF NTs/CC (**c**) Co/Ni-LZ-24 NTs/CC (**d**), Co/Ni-LZ-36 NTs/CC

(e) and Co/Ni@LDH(T)/CC (f) at 5 to 120 mV s⁻¹.

Fig. S7 The Randles equivalent circuit diagram including solution

resistance (Rs), charge-transfer resistance (Rct), Warburg impedance (Rw),

and the simulated electrodes (SLE).

Fig. S8 CVs curves of different electrodes in PB solutions (0.1 M,

pH=7.0)

Binding energy (eV)							
Materials	Co/Ni-ZIF	Co/Ni-LZ-12	Co/Ni-LZ-24	Co/Ni-LZ-36	Co/Ni-LZ-	Dools type	Dof
					72	геак туре	Kel.
	284.4	284.4	284.2	284.5	284.6	C-C/C=C	
C 1s	285.2	285.1	285.0	285.2	285.5	C-N/C=N	S 1
	288.7	288.7	288.4	288.5	288.5	С=О	
	399.9	399.9	399.8	399.9	399.9	M-N	S1
N 1s			402.3	403.2	403.0	graphitic-N	S2
		406.7	406.6	406.7	407.0	oxidized N	S3
	530.9	530.7	530.7	530.7	530.8	M-O	S4, S5
O 1s	531.6	531.5	531.4	531.5	531.7	$O_{\rm V}$	S4-S6
	532.4	532.3	532.3	532.3	532.6	adsorbed	S4

Table S1 The details information of different elements in the high-resolution XPS spectra.

	$Co^{3+} 2p_{3/2}$	780.8	780.7	780.7	780.7	780.7	
	$Co^{2+}2p_{3/2}$	782.1	782.0	782.0	782.0	782.0	Co 2p
67.69	Sat. 2p _{3/2}	786.0	786.0	786.0	786.0	786.0	-
57-58	$Co^{3+} 2p_{1/2}$	796.6	796.5	796.5	796.5	796.5	
	$Co^{2+} 2p_{1/2}$	798.0	797.8	797.8	797.8	797.8	
	Sat. 2p _{1/2}	803.0	803.0	803.0	803.0	803.0	
	$Ni^{2+}2p_{3/2}$	856.3	855.9	855.8	856.0	856.1	
CO C11	Sat. 2p _{3/2}	862.1	861.7	861.4	861.9	861.9	Ni 2p
S9-S11	$Ni^{2+} 2p_{1/2}$	874.0	873.5	873.4	873.6	873.9	
	Sat. 2p _{1/2}	880.1	879.7	879.8	879.7	880.1	

_

water

Element	Peak-type	Element content					
		Co/Ni-ZIF	Co/Ni-LZ-12	Co/Ni-LZ-24	Co/Ni-LZ-36	Co/Ni-LZ-72	
C 1s	C-C/C=C	27.3	31.2	43.1	45.0	46.4	
	C-N/C=N	32.9	39.9	41.2	34.7	36.4	
	C=O	39.8	28.8	15.6	20.3	17.2	
N 1s	M-N	32.9	33.7	36.1	35.5	33.5	
	graphitic-N	38.0	36.0	34.7	34.7	34.2	
	oxidized N	29.1	30.2	29.2	29.8	32.3	
O 1s	M-O	100.0	50.6	21.0	27.9	44.7	
	O_V	0.0	0.0	21.0	15.7	17.6	
	adsorbed water	0.0	49.4	58.0	56.4	37.7	
Co 2p	$Co^{3+}2p_{3/2}$	11.5	22.3	15.3	12.3	10.1	

Table S2 The content of each element of all the prepared materials.

	$Co^{2+} 2p_{3/2}$	18.0	22.3	20.5	22.8	21.5
	Sat. 2p _{3/2}	46.3	22.3	40.2	40.4	46.3
	$Co^{3+} 2p_{1/2}$	3.6	8.1	7.3	6.2	4.5
	$Co^{2+} 2p_{1/2}$	9.6	8.1	7.6	7.9	9.1
	Sat. 2p _{1/2}	11.0	16.9	9.1	10.4	8.6
Ni 2p	$Ni^{2+}2p_{3/2}$	30.0	28.6	26.5	26.7	28.4
	Sat. 2p _{3/2}	30.0	34.9	34.8	34.7	33.4
	$Ni^{2+} 2p_{1/2}$	21.7	16.5	19.1	19.2	20.4
	Sat. 2p _{1/2}	18.3	20.1	19.6	19.4	17.8

Materials	Semiconductor Type	E _f (n-type)	E _f (p-type)
Co/Ni-ZIF-67 NTs	n	1.91 eV	/
Co/Ni-LZ-12 NTs	p-n	1.47 eV	0.61 eV
Co/Ni-LZ-24 NTs	p-n	1.27 eV	0.57 eV
Co/Ni-LZ-36 NTs	p-n	1.21 eV	0.54 eV
Co/Ni-LZ-72 NTs	p-n	0.95 eV	0.51 eV

Table S3 The semiconductor type and the value of $E_{\rm f}$ in materials

Table S4 The value of resistance, C_{dl} and EASA with different value of

 C_s

Electrodes	R (Ω)	C _{dl}	EASA (cm ²)		
		(mF cm ⁻²)	C _s (μF cm ⁻²)		
			20	40	60
CC	19.93	0.075	3.76	1.88	1.25
Co/Ni-ZIF-67 NTs/CC	2.35	0.11	5.57	2.78	1.86
Co/Ni-LZ-24 NTs/CC	2.13	0.14	7.08	3.54	2.36
Co/Ni-LZ-36 NTs/CC	1.97	0.24	11.82	5.91	3.94
Co/Ni-LZ-72 NTs/CC	1.88	0.14	7.06	3.53	2.35

Table S5 The overpotentials ($\eta)$ and Tafel slopes of CC, Co/Ni-ZIF

Electrodes	HER		OE	R
	$\eta(V)$	Tafel slope	η (V)	Tafel slope
		(mV dec ⁻¹)		(mV dec ⁻¹)
CC	241.76	381.72	488.49	35.80
Co/Ni-ZIF NTs/CC	119.60	43.54	301.48	32.88
Co/Ni-LZ-24 NTs/CC	80.50	19.88	297.49	36.22
Co/Ni-LZ-36 NTs/CC	100.90	52.81	289.59	28.59
Co/Ni-LZ-72 NTs/CC	97.60	63.79	295.34	40.37

NTs/CC and Co/Ni-LZ-t NTs/CC.

Electrodes	Q _A (×10 ³ , Coulombs)	OER a (×10 ⁹ , moles)	j (mA cm ⁻² , η=0.4 V	TOF (s ⁻¹)	HER a (×10 ⁹ , moles)	j (mA cm ⁻² , η=-0.15 V	TOF (s ⁻¹)
Co/Ni-ZIF NTs/CC	2.19	5.67	3.46	1.58	11.3	7.10	3.25
Co/Ni-LZ-12 NTs/CC	5.93	15.4	74.08	12.49	30.7	11.55	1.95
Co/Ni-LZ-24 NTs/CC	13.11	34	85.54	6.53	67.9	13.70	1.04
Co/Ni-LZ-36 NTs/CC	10.05	26	92.09	9.16	52.1	12.70	1.26
Co/Ni-LZ-72 NTs/CC	2.16	5.59	91.18	42.26	11.2	12.47	5.78

 Table S6 Some catalytic parameters in different electrodes.

Electrodes	$\eta_{(HER)}(mV)$	$\eta_{(OER)}(mV)$	cell voltage (10 mA cm ⁻²)	Ref.
Ni-CoP/Co2P-NC	117	/	1.59	S12
Hy-Ni-CoP/Co2P-NC	/	272		
Dual vacancies doped MnO ₂	59	260	1.55	S13
CuO-CoZn-LDH/CF	124	194	1.55	S14
Co-N-CS/N-HCP-CC	66	248	1.545	S1
Pt/C-CC IrO ₂ -CC	/	/	1.592 V	
CoFe-NiFe/ NF	160	240	1.59	S15
Co/Ni-LZ-24 NTs	80.5	/	1.59	This work
Co/Ni-LZ-36 NTs	/	289.6		

Table S7 The comparison of catalytic performances in three-electrode and two-electrode system.

Reference

- S1. Chen, Z.; Ha, Y.; Jia, H.; Yan, X.; Chen, M.; Liu, M.; Wu, R., Oriented Transformation of Co-LDH into 2D/3D ZIF-67 to Achieve Co–N–C Hybrids for Efficient Overall Water Splitting. *Advanced Energy Materials*, 2019, 9(19), 1803918.
- S2. Huang, J.; Sementa, L.; Liu, Z.; Barcaro, G.; Feng, M.; Liu, E.; Jiao, L.; Xu, M.; Leshchev, D.; Lee, S.-J.; Li, M.; Wan, C.; Zhu, E.; Liu, Y.; Peng, B.; Duan, X.; Goddard, W. A.; Fortunelli, A.; Jia, Q.; Huang, Y., Experimental Sabatier plot for predictive design of active and stable Pt-alloy oxygen reduction reaction catalysts. *Nature Catalysis*, 2022, 5(6), 513-523.
- S3. Liu, Y.; Li, C.; Loubidi, M.; Wang, D.; Zhou, L.; Niu, S.; Liu, Q.; Huo, J., Increasing exposure of atomically dispersed Ni sites via constructing hierarchically porous supports for enhanced electrochemical CO₂ reduction. *Chemical Engineering Journal*, 2021, **426**, 131414.
- S4. Tahir, M. U.; Arshad, H.; Zhang, H.; Hou, Z.; Wang, J.; Yang, C.; Su, X., Room temperature and aqueous synthesis of bimetallic ZIF derived CoNi layered double hydroxides and their applications in asymmetric supercapacitors. *Journal* of Colloid and Interface Science, 2020, 579, 195-204.
- S5. Xie, Y.; Zhou, Z.; Yang, N.; Zhao, G., An Overall Reaction Integrated with Highly Selective Oxidation of 5-Hydroxymethylfurfural and Efficient Hydrogen Evolution. *Advanced Functional Materials*, 2021, **31**(34), 2102886.
- S6. Zhu, B.; Qin, Y.; Du, J.; Zhang, F.; Lei, X., Ammonia Etching to Generate Oxygen Vacancies on CuMn₂O₄ for Highly Efficient Electrocatalytic Oxidation of 5-Hydroxymethylfurfural. ACS Sustainable Chemistry & Engineering, 2021, 9(35), 11790-11797.
- S7. Chen, M.; Wang, N.; Wang, X.; Zhou, Y.; Zhu, L., Enhanced degradation of tetrabromobisphenol A by magnetic Fe3O4@ZIF-67 composites as a heterogeneous Fenton-like catalyst. *Chemical Engineering Journal*, 2021, 413, 127539.
- S8. Li, J.; Li, F.; Liao, J.; Li, H.; Dang, D.; Liu, Q.; Peng, H.-J., Scalable Construction of Hollow Multishell Co₃O₄ with Mitigated Interface Reconstruction for Efficient Lithium Storage. *Advanced Materials Interfaces*, 2020, 7(14), 2000667.
- Kale, A. M.; Manikandan, R.; Justin Raj, C.; Dennyson Savariraj, A.; Voz, C.; Kim, B. C., Protonated nickel 2-methylimidazole framework as an advanced electrode material for high-performance hybrid supercapacitor. *Materials Today Energy*, 2021, 21, 100736.
- S10. Shih, Y.-J.; Lin, P.-Y.; Wu, Z.-L., Catalytic oxidation and deionization of nitrite and nitrate ions using mesoporous carbon-supported nano-flaky cobalt and nickel oxyhydroxides. *Journal of Colloid and Interface Science*, 2022, **611**, 265-277.
- S11. Wang, Z.; Xu, L.; Huang, F.; Qu, L.; Li, J.; Owusu, K. A.; Liu, Z.; Lin, Z.; Xiang, B.; Liu, X.; Zhao, K.; Liao, X.; Yang, W.; Cheng, Y.-B.; Mai, L., Copper–Nickel

Nitride Nanosheets as Efficient Bifunctional Catalysts for Hydrazine-Assisted Electrolytic Hydrogen Production. *Advanced Energy Materials*, 2019, **9**(21), 1900390.

- S12. Chu, H.; Feng, P.; Jin, B.; Ye, G.; Cui, S.; Zheng, M.; Zhang, G.-X.; Yang, M., In-situ release of phosphorus combined with rapid surface reconstruction for Co– Ni bimetallic phosphides boosting efficient overall water splitting. *Chemical Engineering Journal*, 2022, 433, 133523.
- S13. Liu, Y.; Bui, H. T. D.; Jadhav, A. R.; Yang, T.; Saqlain, S.; Luo, Y.; Yu, J.; Kumar, A.; Wang, H.; Wang, L.; Bui, V. Q.; Kim, M. G.; Kim, Y. D.; Lee, H., Revealing the Synergy of Cation and Anion Vacancies on Improving Overall Water Splitting Kinetics. *Advanced Functional Materials*, 2021, **31**(21), 2010718.
- S14. Yin, L.; Du, X.; Di, C.; Wang, M.; Su, K.; Li, Z., In-situ transformation obtained defect-rich porous hollow CuO@CoZn-LDH nanoarrays as self-supported electrode for highly efficient overall water splitting. *Chemical Engineering Journal*, 2021, 414, 128809.
- S15. Yang, R.; Zhou, Y.; Xing, Y.; Li, D.; Jiang, D.; Chen, M.; Shi, W.; Yuan, S., Synergistic coupling of CoFe-LDH arrays with NiFe-LDH nanosheet for highly efficient overall water splitting in alkaline media. *Applied Catalysis B: Environmental*, 2019, 253, 131-139.