Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting Information

A mild exfoliation synthesis oftwo-dimensional layered V₂C MXenefor high performance lithium ion batteries

YananXu^{a,*}, Li Li^{b*}

^aFaculty Of Education, Tianjin Normal University, Tianjin 300387 (P. R. China)

^bSchool of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong,

China

*Corresponding authors at: School of Materials Science and Engineering, University of Jinan,

Jinan 250022, PR China.

Tel.: +86 15621888686

E-mail addresses: xuyanan2016@126.com(Y. Xu), mse lil@ujn.edu.cn (L. Li)

Sample	Electrolyte	Current Density	Reversible Capacity	Ref.
			$(mAh g^{-1})$	
Ti ₂ CT _x	1.0 M LiPF ₆	0.04 C	225	S 1
V_2CT_x	1.0 M LiPF ₆	1 C	260	S2
Nb ₂ CT _x	1.0 M LiPF ₆	1 C	170	S2
$Ti_3C_2T_x$	1.0 M LiPF ₆	0.1 C	178.5	S3
$Nb_4C_3T_x$	1.0 M LiPF ₆	0.1 A g ⁻¹	380	S4
$Hf_3C_2T_x$	1.0 M LiPF ₆	0.2 Ag^{-1}	146	S5
V ₂ C (HCl+LiF)	1.0 M LiPF ₆	0.1 Ag^{-1}	397.6	this work
V ₂ C (HCl+LiF-3d)	1.0 M LiPF ₆	0.1 A g ⁻¹	402.9	this work

Table S1 Comparison of reversible capacity of different pure MXene

Fig. S1 (a) Nyquist plots (b) Z'- $\omega^{-1/2}$ relationship curve and (c) capacitance contribution ratio of V₂C materials etched during different time with etchant of HCl+LiF

Fig.S2 Test curves of V₂C (HF) electrode: (a) CV curves at 200 mAh g⁻¹, (b) constant current charge-discharge curves, (c) CV curves at various sweep speeds, (d) the peak current-sweep velocity relation curve and, (e, f) capacitance contribution ratio at sweep speed of 2 mV s⁻¹ and at various sweep rates, respectively.

Fig.S3 Test curves of V₂C (HF+H₂O₂) electrode: (a) CV curves at 200 mAh g⁻¹, (b) constant current charge-discharge curves, (c) CV curves at various sweep speeds, (d) the peak current-sweep velocity relation curve and (e, f) capacitance contribution ratio at sweep speed of 2 mV s⁻¹ and at various sweep rates, respectively.

Fig.S4 Test curves of V₂C (HCl+LiF-4d) electrode: (a) CV curves at 200 mAh g⁻¹, (b) constant current charge-discharge curves, (c) CV curves at various sweep speeds, (d) the peak current-sweep velocity relation curve and (e, f) capacitance contribution ratio at sweep speed of 2 mV s⁻¹ and at various sweep rates, respectively.

Supplementary References

- S1. M. Naguib, J. Come, B. Dyatkin, V. Presser, P. L. Taberna, P. Simon, M. W. Barsoum, Y. Gogotsi, MXene: a promising transition metal carbide anode for lithium-ion batteries, Electrochem. Commun. 2012, 16, 61.
- S2. M. Naguib, J. Halim, J. Lu, K. M. Cook, L. Hultman, Y. Gogotsi, M. W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries, J. Am. Chem. Soc. 2013, 135, 15966.
- S3. D. D. Sun, M. S. Wang, Z. Y. Li, G. X. Fan, L. Z. Fan, A. G. Zhou, Twodimensional Ti₃C₂ as anode material for Li-ion batteries, Electrochem. Commun. 2014, 47, 80.
- S4. S. Zhao, X. Meng, K. Zhu, F. Du, G. Chen, Y. Wei, Y. Gogotsi, Y. Gao, Li-ion uptake and increase in interlayer spacing of Nb₄C₃ MXene, Energy Storage Mater. 2017, 8, 42.
- S5. J. Zhou, X. Zha, X. Zhou, F. Chen, G. Gao, S. Wang, C. Shen, T. Chen, C. Zhi, P. Eklund, S. Du, J. Xue, W. Shi, Z. Chai, Q. Huang, Synthesis and electrochemical properties of two-dimensional hafnium carbide, ACS Nano 2017, 11, 3841.