Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supplementary Information

A novel electrochemical sensor with COF_{TZT-DVA}/CNT@PB nanoflower for hydrogen peroxide detection

Yuting Liu¹, Mengjie Yu¹, Jianhui Xiong, Longfei Miao* and Yonghai Song

College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022,

China.

^{*}Corresponding author: Tel/Fax: +86 791 88120861. E-mail: longfei@jxnu.edu.cn

¹Contributed equally to this work.

Chemical reagents: 2,4, 6-tri (4-aminophenyl) -1,3, 5-triazine (TZT) and 2,5-Divinyl-1,4benzenedicarboxaldehyde (DVA) were bought from Jilin Chinese Academy of Sciences - Yanshen Technology Co., Ltd. Amino carbon nanotubes (NH₂-CNT), Potassium ferricyanide, ferric chloride (FeCl₃), H₂O₂, NaCl, KCl, CaCl₂, uric acid (UA) and glucose were acquired from Aladdin (Shanghai, China). Methanol, acetonitrile, N,N-dimethylformamide (DMF), tetrahydrofuran (THF), acetic acid (HAc) and hydrochloric acid (HCl) were prepared with Xilong Science Co., Ltd. (Shantou, China). **Instruments.** All electrochemical experiments were conducted on the CHI-760E electrochemical workstation (Shanghai, China). Three-electrode system consisted of a saturated calomel electrode (SCE) as the reference electrode, a platinum wire electrode as the counter electrode and the modified electrode using as the working electrode. Cyclic voltammetry (CV) was carried out in 0.2 M PBS (pH=7.0). N₂ adsorption-desorption isothermal test was operated in liquid nitrogen environment (77 K) using Belsorp-mini II (McKiebel Co. Ltd, Japan). D/Max 2500 V/PC X-ray powder diffract meter (PXRD) was conducted using Cu K α radiation with range from 2° to 50° and scanning step maintained 3°/min. Fourier transform infrared spectroscopy (FTIR) was recorded on a Nicolet 6700 FT-IR spectrophotometer. X-ray photoelectron spectroscopy (XPS) was tested using ESCA-LAB-MKII with Al K α as excitation source and C1s (284.6 eV) as reference line.

Figure S1. (a) ¹H NMR spectrum of $COF_{TZT-DVA}$ in $CDCl_{3;}$ (b), (c) FESEM diagram of PB; (d) FESEM diagram of $COF_{TZT-DVA}$ @PB.

Figure S2. Corresponding mapping of COF_{TZT-DVA}/CNT@PB.

Figure S3. Thermogravimetric analysis (TGA) curves of the COF_{TZT-DVA}/CNT@PB nanocomposite material.

Figure S4. (a) CV curves of GCE (curve a), $COF_{TZT-DVA}/GCE$ (curve b), $COF_{TZT-DVA}@PB/GCE$ (curvec) and $COF_{TZT-DVA}/CNT@PB/GCE$ (curve d) in PBS (pH = 6) solution containing 0.1 M KCl; CV curves of (b) PBNPs/GCE, (c) $COF_{TZT-DVA}@PB/GCE$, and (d) $COF_{TZT-DVA}/CNT@PB/GCE$ in PBS (pH=6) solution containing 0.2 M KCl for 10 cycles (sweep rate 50 mV s⁻¹).

Figure S5. (a) Current responses of modified $COF_{TZT-DVA}/CNT@PB/GCE$ with different NH_2 -CNT masses and (b) 2 mg/mL $COF_{TZT-DVA}/CNT@PB$ modified electrodes at 0.1 V in PBS (pH=6) solution containing 0.1 M KCl; (c) Optimization of reduction potential.

Electrode Materials	Sensitivity ($\mu A \ mM^{-1} \ cm^{-2}$)	Detection limit (µM)	Linear range	Refs
AgNPs/porous silicon	34.07	0.45	1.65 µM-0.5 mM	[1]
rROGO-S-Au HS/GCE	-	5	5 µM-11.5 mM	[2]
$1-WO_3/g-C_3N_4/CC$	78	2.07	3-30 µM	[3]
$2-WO_3/g-C_3N_4/CC$	59	2.53	3-30 µM	
CV-CuNPs-rGO-2	-	0.601	100-18 mM	[4]
Meso-C/ZnO/GCE	5.52	52.60	200-3.1 mM	[5]
PtNPs/CNF	-	1.7	5-1.5 mM	[6]
COF _{TZT-DVA} /CNT@PB	210	0.79	2.38 µM-1.05 mM	This work

 Table S1. Performance comparison of different H2O2 electrochemical sensors

References

[1] Ensafi A A, Rezaloo F, Rezaei B. Electrochemical sensor based on porous silicon/silver nanocomposite for the determination of hydrogen peroxide. Sensors and Actuators B: Chemical, 2016, 231: 239-244.

[2] Li, P Y, Chen, L, Yao, Q S, et al. Graphene supported gold hollow sphere for real-time electrochemical detection of H₂O₂ released from cells. Journal of Electroanalytical Chemistry, 2024, 958: 118153.

[3] Mohammad A, Asseri A H, Khan M I, et al. Flexible electrochemical sensor for hydrogen peroxide detection by employing $WO_3/g-C_3N_4$ nanostructures. Journal of The Electrochemical Society, 2023, 170(5): 057506.

[4] Moozarm Nia P, Woi P M, Alias Y. Facile one-step electrochemical deposition of copper nanoparticles and reduced graphene oxide as nonenzymatic hydrogen peroxide sensor. Applied Surface Science, 2017, 413: 56-65.

[5] Rashed M A, Faisal M, Harraz F A, et al. A highly efficient nonenzymatic hydrogen peroxide electrochemical sensor using mesoporous carbon doped ZnO nanocomposite. Journal of The Electrochemical Society, 2021, 168(2): 027512.

[6] Yang Y, Fu R, Yuan J, et al. Highly sensitive hydrogen peroxide sensor based on a glassy carbon electrode modified with platinum nanoparticles on carbon nanofiber heterostructures. Microchimica Acta, 2015, 182(13-14): 2241-2249.