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1. Materials

Polyacrylonitrile (PAN, M,, = 80 000), N, N-dimethyformamide (DMF, 98 %),
potassium hydroxide (KOH, >85%), methanol (99.5%), zinc acetate (Zn(OAc),, 99%), cobalt
nitrate hexahydrate (Co(NO3),-6H,0, 99%) and 2-methylimidazole (2-MI, 98%) were directly
used without further purification. Carbon black and commercial Pt/C were obtained from
Shanghai Hesen Electric Co. Ltd. Ruthenium oxide (RuO,) was chased from Aladdin.

Deionized water was used for all the catalyst synthesis and electrochemical tests.

2. Physicochemical characterizations

The nanostructure of 2-MI/PAN, Co-Zn-ZIF/PAN, Co-ZIF/PAN, Co-Zn/CNFs and
Co/CNFs were explored by scanning electron microscopy (SEM, Pro, Phenom, Netherlands).
The lattice fringes and interfacial structures of nanomaterials were characterized by
transmission electron microscopy (TEM, JEM-2100 JEOL, Japan). X-ray diffraction (XRD,
Rigaku Ultima IV, Japan) analysis was conducted with a Cu Ko (A = 0.15406 nm) radiation
source. The specific surface area and pore size distribution were determined using a Quanta
chrome instrument (ASIQM-0001-3 instrument, USA). X ray photoelectron spectroscopy
(XPS, Escalab 250 xi. Thermo Fisher Scientific USA) was carried out on Al Ka radiation
source. The Raman spectroscopya (InVia Microscope Raman, Renishaw, England) was
conducted on an argon laser source. Thermogravimetric analysis (TGA) was performed using
STA-449F3 (NETZSCH Instruments, German). Temperature increases at 5 °C/min under

nitrogen atmosphere.

3. Electrochemical measurements

All OER/ORR tests are performed using a three-electrode system.

OER: Catalyst ink was prepared by adding deionized water (100 pL), ethanol (98 pL)
and Nafion solution (2 pL) to catalyst sample (1 mg). Drops were placed on carbon paper at a
loading of 1.5 mg/cm?. Oxygen (99.9%) was filled into a four-mouth bottle containing 1.0 M

KOH for 30 min before the test, followed by 50 cycles of cyclic voltammetry activation.

ORR: Catalyst ink was prepared in the same way as for OER. The catalyst ink (15 pL)

was loaded onto a GC electrode (0.195 mg/cm?). Cyclic voltammetry (CV) studies were



performed in nitrogen- and oxygen-saturated 0.10 M KOH solution at a scan rate of 100 mV
sl

The overpotential and electron transfer numbers were calculated using the following
equations:

Erug= Escg+0.0592 pH + 0.241 V
n=4l,;/ (I3 + I/N)

Which Egyg is the potential vs. Reversible hydrogen electrode (RHE), Egcg is the
potential vs. calomel electrode, and pH is the pH value of electrode.

Double layer capacitors (Cg4) were tested at different CV scan speeds of 20, 40, 60, 80,
100, and 120 mV s°!. The potentials were calculated by the formula:

Erpe = Engmgo+0.0592 pH + 0.098 V

Which Egyr 1s the potential vs. Reversible hydrogen electrode (RHE), Eygmgo 18 the

potential vs. Hg/HgO electrode, and pH is the pH value of electrode.
The current density normalised by electrochemical active surface area was calculated

using the following equation:

I
Cua/Cs

Where Jgcsa is the current density normalised by ECSA (mA ¢cm™); / is the current (mA);

JECsA=

Cq is the double layer capacitance, Cs is the specific capacitance for a 1 cm? flat surface,

which is generally considered as 0.040 mF c¢cm in alkaline solution.

Turnover frequency (TOF) values were calculated below:
TOF =j x S/ (z X F X Nypera)

S is the surface area coated by catalysts; j is the current density; z is the accepted or
donated electrons for the generation of each H, or O, molecule (4 for OER/ORR process); F
is the Faraday constant (96485.3 C mol!); n. represents the amount of moles of all the
active metal.

The zinc-air battery consisted of zinc foil, 6.0 M KOH and 0.2 M Zn(Ac), electrolyte,
Whatman TM glass microfiber spacer and nickel foam. The catalyst was formulated 1:1 with

carbon black to form an ink (water (100 pL), ethanol (98 pL) and Nafion solution (2 pL))



drop on carbon paper (loaded with 1.0 mg cm). Pt/C+RuO, was loaded on carbon paper (1.0

mg cm2).
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Fig. S1 (a), (b), (c) and (d) SEM images of the Co-Zn-ZIF/PAN-4, Co-Zn-ZIF/PAN-1 and
Co-ZIF/PAN, respectively.
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Fig. S2 (a), (b), (c) and (d) SEM images of the Co-Zn/CNFs-4, Co-Zn/CNFs-1 and Co/CNFs,
respectively.
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Fig. S3 TGA curve of Co-Zn/CNFs-2.
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Fig. S4 EDX spectrum of Co-Zn/CNFs-2
Table S1 ICP-MS of Co-Zn/CNFs-2
Element Co/wt% Zn/wt% Co/Zn atomic ratio
Atomic fraction (%) 18.41 1.10 31.2/1.7
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Fig. S5 XRD patterns of Co-Zn-ZIF/PAN-4, Co-Zn-ZIF/PAN-2, Co-Zn-ZIF/PAN-1 and
Co-ZIF/PAN.
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Fig. S6 XRD patterns of Co-Zn/CNFs-4 and Co-Zn/CNFs-1.
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Fig. S7 Contact angles patterns of Co-Zn/CNFs-2 and Co/CNFs.
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Fig.S8 ECSA-normalized LSV curves of different catalysts
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Fig. S9 The CV measurements in a non-faradic current region of (a) Co/CNFs, (b) Co-
Zn/CNFs-4, (¢) Co-Zn/CNFs-2, (d) Co-Zn/CNFs-1 and (e) RuO, at different scan rates of 20,
40, 60, 80, 100, and 120 mV s-!.

Fig. S10 (a) and (b) SEM images of the Co-Zn/CNFs-2 before and after OER test.
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Fig. S11 (a) and (b) XRD patterns of Co-Zn/CNFs-2 before and after OER test.
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Fig. S12 XPS spectrum image of Co-Zn/CNFs-2 before and after OER test.
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Fig. S13 CV curves of different catalysts in O,-saturated 0.1M KOH
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Fig. S14 (a), (b) and (c) LSV curves of Co-Zn/CNFs-4, Co-Zn/CNFs-1 and Co/CNFs samples
at different rotation rates.
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Fig. S15 The TOF values for Co-Zn/CNFs-2 toward OER and ORR process.
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Fig. S16 Comparison of bifunctional activities of different samples

Table S2 Comparison of the OER and ORR performance of different catalysts

Catalyst Ei-10 Ei» AE Reference

(Vvs.RHE) (V vs. RHE)

Co-Zn/CNFs-2 1.52 0.816 0.70 This work
Co/Zn@NCF 1.69 0.84 0.85 Chemical Engineering Journal,

2023, 477: 147022

S-Co/CoNC 1.53 0.81 0.72 Materials Today Physics, 2023,
37: 101209
CNFs/CoZn- 1.57 0.82 0.75 Journal of Colloid and Interface
MOF@COF Science, 2024, 666: 35
ZnCoFe-N-C 1.60 0.878 0.72 Small, 2023, 19(30): 2300612
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International Journal of Hydrogen
Energy, 2023, 48(13): 5095
Journal of Colloid and Interface
Science, 2023, 630: 763
Journal of Energy Chemistry,
2023, 83:138
ACS Sustainable Chemistry
&Engineering, 2021, 9: 17068
Advanced Energy Materials,
2017, 7(21): 1700467
Energy Storage Materials, 2022,
47:365
Chinese Journal of Polymer
Science, 2023, 41(12): 1889
Materials Today Energy, 2021,
20: 100682
Journal of Alloys and
Compounds, 2023, 932: 167458
Small, 18(16): 2200578
Nano-Micro Letters, 2019, 11: 1
Inorganic chemistry, 2024, 63(9):

4373

Table S3 Comparison of the peak power density of Zn-air batteries with various

electrocatalysts
Catalyst Peak power density Reference
(mW c¢m™2)
Co-Zn/CNFs-2 318.22 This work
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