Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Bimetallic-organic framework-derived Co-ZnO grown on carbon

nanofibers as bifunctional electrocatalysis for rechargeable Zn-air batteries

Xiaolan Wang^{a,b,c}, Shaoshuai Xu^{a,b,c}, Jie Bai^{a,b,c}, Xingwei Sun*^{a,b,c} and Chunping Li*^{a,b,c}

^aCollege of Chemical Engineering, Inner Mongolia University of Technology

^bInner Mongolia Key Laboratory of Green Chemical Engineering

^cKey Laboratory of Industrial Catalysis at Universities of Inner Mongolia Autonomous Region

*Corresponding authors: Xingwei Sun, Chunping Li Tel: +86471 6575722. Fax: +86471 6575722. E-mail address: sxw@imut.edu.cn; hgcp_li@126.com

1. Materials

Polyacrylonitrile (PAN, $M_w = 80~000$), N, N-dimethyformamide (DMF, 98 %), potassium hydroxide (KOH, $\geq 85\%$), methanol (99.5%), zinc acetate (Zn(OAc)₂, 99%), cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O, 99%) and 2-methylimidazole (2-MI, 98%) were directly used without further purification. Carbon black and commercial Pt/C were obtained from Shanghai Hesen Electric Co. Ltd. Ruthenium oxide (RuO₂) was chased from Aladdin. Deionized water was used for all the catalyst synthesis and electrochemical tests.

2. Physicochemical characterizations

The nanostructure of 2-MI/PAN, Co-Zn-ZIF/PAN, Co-ZIF/PAN, Co-Zn/CNFs and Co/CNFs were explored by scanning electron microscopy (SEM, Pro, Phenom, Netherlands). The lattice fringes and interfacial structures of nanomaterials were characterized by transmission electron microscopy (TEM, JEM-2100 JEOL, Japan). X-ray diffraction (XRD, Rigaku Ultima IV, Japan) analysis was conducted with a Cu K α (λ = 0.15406 nm) radiation source. The specific surface area and pore size distribution were determined using a Quanta chrome instrument (ASIQM-0001-3 instrument, USA). X ray photoelectron spectroscopy (XPS, Escalab 250 xi. Thermo Fisher Scientific USA) was carried out on Al K α radiation source. The Raman spectroscopya (InVia Microscope Raman, Renishaw, England) was conducted on an argon laser source. Thermogravimetric analysis (TGA) was performed using STA-449F3 (NETZSCH Instruments, German). Temperature increases at 5 °C/min under nitrogen atmosphere.

3. Electrochemical measurements

All OER/ORR tests are performed using a three-electrode system.

OER: Catalyst ink was prepared by adding deionized water (100 μ L), ethanol (98 μ L) and Nafion solution (2 μ L) to catalyst sample (1 mg). Drops were placed on carbon paper at a loading of 1.5 mg/cm². Oxygen (99.9%) was filled into a four-mouth bottle containing 1.0 M KOH for 30 min before the test, followed by 50 cycles of cyclic voltammetry activation.

ORR: Catalyst ink was prepared in the same way as for OER. The catalyst ink (15 μ L) was loaded onto a GC electrode (0.195 mg/cm²). Cyclic voltammetry (CV) studies were

performed in nitrogen- and oxygen-saturated 0.10 M KOH solution at a scan rate of 100 mV s^{-1} .

The overpotential and electron transfer numbers were calculated using the following equations:

$$E_{RHE} = E_{SCE} + 0.0592 \text{ pH} + 0.241 \text{ V}$$

 $n = 4I_d / (I_d + I_r/N)$

Which E_{RHE} is the potential vs. Reversible hydrogen electrode (RHE), E_{SCE} is the potential vs. calomel electrode, and pH is the pH value of electrode.

Double layer capacitors (C_{dl}) were tested at different CV scan speeds of 20, 40, 60, 80, 100, and 120 mV s⁻¹. The potentials were calculated by the formula:

$$E_{\rm RHE} = E_{\rm Hg/HgO} + 0.0592 \text{ pH} + 0.098 \text{ V}$$

Which E_{RHE} is the potential vs. Reversible hydrogen electrode (RHE), $E_{Hg/HgO}$ is the potential vs. Hg/HgO electrode, and pH is the pH value of electrode.

The current density normalised by electrochemical active surface area was calculated using the following equation:

$$J_{\rm ECSA} = \frac{I}{C_{\rm dl}/C_s}$$

Where J_{ECSA} is the current density normalised by ECSA (mA cm⁻²); *I* is the current (mA); C_{dl} is the double layer capacitance, *C*s is the specific capacitance for a 1 cm² flat surface, which is generally considered as 0.040 mF cm⁻² in alkaline solution.

Turnover frequency (TOF) values were calculated below:

$$TOF = \mathbf{j} \times \mathbf{S} / (\mathbf{z} \times \mathbf{F} \times \mathbf{n}_{metal})$$

S is the surface area coated by catalysts; j is the current density; z is the accepted or donated electrons for the generation of each H_2 or O_2 molecule (4 for OER/ORR process); F is the Faraday constant (96485.3 C mol⁻¹); n_{metal} represents the amount of moles of all the active metal.

The zinc-air battery consisted of zinc foil, 6.0 M KOH and 0.2 M Zn(Ac)₂ electrolyte, Whatman TM glass microfiber spacer and nickel foam. The catalyst was formulated 1:1 with carbon black to form an ink (water (100 μ L), ethanol (98 μ L) and Nafion solution (2 μ L)) drop on carbon paper (loaded with 1.0 mg cm⁻²). Pt/C+RuO₂ was loaded on carbon paper (1.0 mg cm⁻²).

Fig. S1 (a), (b), (c) and (d) SEM images of the Co-Zn-ZIF/PAN-4, Co-Zn-ZIF/PAN-1 and Co-ZIF/PAN, respectively.

Fig. S2 (a), (b), (c) and (d) SEM images of the Co-Zn/CNFs-4, Co-Zn/CNFs-1 and Co/CNFs, respectively.

Fig. S3 TGA curve of Co-Zn/CNFs-2.

Fig. S4 EDX spectrum of Co-Zn/CNFs-2

Table S1 ICP-MS of Co-Zn/CNFs-2

Element	Co/wt%	Zn/wt%	Co/Zn atomic ratio
Atomic fraction (%)	18.41	1.10	31.2/1.7

Fig. S5 XRD patterns of Co-Zn-ZIF/PAN-4, Co-Zn-ZIF/PAN-2, Co-Zn-ZIF/PAN-1 and Co-ZIF/PAN.

Fig. S6 XRD patterns of Co-Zn/CNFs-4 and Co-Zn/CNFs-1.

Fig. S7 Contact angles patterns of Co-Zn/CNFs-2 and Co/CNFs.

Fig.S8 ECSA-normalized LSV curves of different catalysts

Fig. S9 The CV measurements in a non-faradic current region of (a) Co/CNFs, (b) Co-Zn/CNFs-4, (c) Co-Zn/CNFs-2, (d) Co-Zn/CNFs-1 and (e) RuO₂ at different scan rates of 20, 40, 60, 80, 100, and 120 mV s⁻¹.

Fig. S10 (a) and (b) SEM images of the Co-Zn/CNFs-2 before and after OER test.

Fig. S11 (a) and (b) XRD patterns of Co-Zn/CNFs-2 before and after OER test.

Fig. S12 XPS spectrum image of Co-Zn/CNFs-2 before and after OER test.

Fig. S13 CV curves of different catalysts in O₂-saturated 0.1M KOH

Fig. S14 (a), (b) and (c) LSV curves of Co-Zn/CNFs-4, Co-Zn/CNFs-1 and Co/CNFs samples at different rotation rates.

Fig. S15 The TOF values for Co-Zn/CNFs-2 toward OER and ORR process.

Fig. S16 Comparison of bifunctional activities of different samples

Catalyst	$E_{j=10}$	E _{1/2}	ΔΕ	Reference
	(V vs. RHE)	(V vs. RHE)		
Co-Zn/CNFs-2	1.52	0.816	0.70	This work
Co/Zn@NCF	1.69	0.84	0.85	Chemical Engineering Journal,
				2023, 477: 147022
S-Co/CoNC	1.53	0.81	0.72	Materials Today Physics, 2023,
				37: 101209
CNFs/CoZn-	1.57	0.82	0.75	Journal of Colloid and Interface
MOF@COF				Science, 2024, 666: 35
ZnCoFe-N-C	1.60	0.878	0.72	Small, 2023, 19(30): 2300612

Table S2 Comparison of the OER and ORR performance of different catalysts

CANC HONE	1 50	0.82	0.75	International Insural of Hydrogen
CONC-HCNFS	1.58	0.83	0.75	
				Energy, 2023, 48(13): 5095
CoNi/Ti4O7@NS-	1.524	0.86	0.66	Journal of Colloid and Interface
CNFs				Science, 2023, 630: 763
ES-Co/Zn-CNZIFs	1.692	0.857	0.83	Journal of Energy Chemistry,
				2023, 83:138
Co-N@PCNFs-0.2	1.66	0.87	0.79	ACS Sustainable Chemistry
				&Engineering, 2021, 9: 17068
NiFe-LDH/Co,N-	1.542	0.790	0.75	Advanced Energy Materials,
CNF				2017, 7(21): 1700467
Co-N-CCNFMs	1.559	0.84	0.719	Energy Storage Materials, 2022,
				47: 365
Co@Fe-CNFs-1000	_	0.81	_	Chinese Journal of Polymer
				Science, 2023, 41(12): 1889
ZIF-67@FeCo-NFs	1.62	0.89	0.73	Materials Today Energy, 2021,
				20: 100682
CoZn/N-CNFs	_	0.814	—	Journal of Alloys and
				Compounds, 2023, 932: 167458
NiFe@C@Co CNFs	1.599	0.87	0.73	Small, 18(16): 2200578
Co/IMCCNFs	_	0.82	—	Nano-Micro Letters, 2019, 11: 1
Co-Fe-Zn@N-	1.556	0.84	0.716	Inorganic chemistry, 2024, 63(9):
CNT/CNF				4373

Table S3 Comparison of the peak power density of Zn-air batteries with various

electrocatalysts

Catalyst	Peak power density (mW cm ⁻²)	Reference
Co-Zn/CNFs-2	318.22	This work

ZnCo-NC-II	161.85	Applied Catalysis B: Environmental, 2022, 316: 121591.
CNFs/CoZn- MOF@COF	203.63	Journal of Colloid and Interface Science, 2024, 666: 35-46
ZnCoFe-N-C	137.8	Small, 2023, 19(30): 2300612
Co-N-C/CNF	159	Nano Research, 2023, 16(1): 545
CoZn/N-CNFs	223.8	Journal of Alloys and Compounds, 2023, 932: 167458
Co/Zn@NCF	202	Chemical Engineering Journal, 2023, 477: 147022
CoNi/Ti ₄ O ₇ @NS- CNFs	165.7	Journal of Colloid and Interface Science, 2023, 630: 763-771
Co-N@PCNFs-0.2	151	ACS Sustainable Chemistry & Engineering, 2021, 9, 17068-17077