Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

SUPPORTING INFORMATION

Heterospin molecular complexes of Cu(hfac)₂ with pyridyl-substituted nitronyl nitroxides: peculiarities of structure and magnetic properties

Svyatoslav E. Tolstikov^{1,⊠}, Andrey E. Kolesnikov², Kristina A. Smirnova^{1,3}, Gleb A. Letyagin^{1,3}, Artem S. Bogomyakov¹, Galina V. Romanenko¹ and Victor I. Ovcharenko¹

¹ International Tomography Centre, Institutskaya St., 3a, Novosibirsk, 630090, Russia
 ² Zelinsky Institute of Organic Chemistry, Leninsky Ave., 47, Moscow, 119991, Russia
 ³ Novosibirsk State University, Pirogova St., 1, Novosibirsk, 630090, Russia
 Cermail: tse@tomo.nsc.ru

CONTENTS

Experimental section	S2
1. Synthetic procedures	S2
2. Characterization	S3
2.1. Powder X-ray diffraction	S3
2.2. Magnetic measurements	S6
2.3. Single crystal X-ray diffraction	S6
3. Selected bond lengths, angles and contacts in dimers	S11
4. References	S12

1. Synthetic procedures

1.1. Materials

The reagents bis(hexafluoroacetylacetonato)copper(II) Cu(hfac)₂ [1], 2-(4-R-pyridin-3-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1*H*-imidazole-3-oxide-1-oxyls [2–5] were synthesized by known procedures. n-Hexane (>99%, "Component-reaktiv"), n-heptane (>99%, "Component-reaktiv"), acetone (>99.8%, "Ekos-1") was used without any additional purification. Dichloromethane which is stabilized by 0.5% of methanol has been purified and dried according to known protocol [6].

1.2. General procedures for obtaining complexes

Procedure A. A 1 ml acetone solution of L^{R} (0.2 mmol) was added in one portion to a 1 ml acetone solution of Cu(hfac)₂ (0.2 mmol). Equivalent volume of *n*-hexane was layered on carefully and the flask was exposed to air at 4°C. The precipitate was filtered off, washed with ice-cold n-hexane and dried in air.

Procedure B. To a solution of $Cu(hfac)_2$ (0.2 mmol) in 1 mL of CH_2Cl_2 a solution of L^R (0.2 mmol) in 2 mL of CH_2Cl_2 was added. A 2 ml of *n*-heptane was layered on carefully and the flask was exposed to air at 4°C. The resulting crystals were filtered off and air dried.

 $[Cu(hfac)_2L^{Br}]_2$. Procedure A. Yield 85%. Found (%): C, 33.4; H, 2.1; N, 5.0; F, 29.0; Br, 10.0. $C_{44}H_{34}Br_2Cu_2F_{24}N_6O_{12}$. Calculated (%): C, 33.4; H, 2.1; N, 5.3; F, 28.8; Br, 10.1.

 $[Cu(hfac)_2L^{CF3}]_2$. Procedure A. Yield 78%. Found (%): C, 35.2; H, 2.1; N, 5.2; F, 36.5. $C_{46}H_{34}Cu_2F_{30}N_6O_{12}$. Calculated (%): C, 35.4; H, 2.2; N, 5.4; F, 36.5.

 $[Cu(hfac)_2L^{Ph}]_2$. Procedure A. Yield 27%. Found (%): C, 42.6; H, 2.8; N, 5.0; F, 29.0. $C_{56}H_{44}Cu_2F_{24}N_6O_{12}$. Calculated (%): C, 42.6; H, 2.8; N, 5.3; F, 28.9.

[Cu(hfac)₂L^{Thio}]₂. Procedure A. Yield 60%. Found (%): C, 38.9; H, 2.4; N, 5.0; S, 4.0; F, 29.0. C₅₂H₄₀Cu₂F₂₄N₆O₁₂S₂. Calculated (%): C, 39.3; H, 2.5; N, 5.3; S, 4.0; F, 28.7.

 $[Cu(hfac)_2]_4(L^{CP})_4$. Procedure B. Yield 95%. Found (%): C, 41.8; H, 3.2; N, 5.4; F, 29.7. $C_{108}H_{104}Cu_4F_{48}N_{12}O_{24}$. Calculated (%): C, 41.6; H, 3.4; N, 5.4; F, 29.3.

 $[Cu(hfac)_2]_4(L^{Cy})_2$. Procedure B. Yield 96%. Found (%): C, 35.5; H, 2.0; N, 3.1; F, 36.4. $C_{76}H_{60}Cu_4F_{48}N_6O_{20}$. Calculated (%): C, 35.9; H, 2.4; N, 3.3; F, 35.9.

 $[Cu(hfac)_2]_4(L^{i-Pr})_4$. Procedure B. Yield 98%. Found (%): C, 40.2; H, 3.2; N, 5.5; F, 30.7. $C_{50}H_{48}Cu_2F_{24}N_6O_{12}$. Calculated (%): C, 39.8; H, 3.2; N, 5.6; F, 30.2.

 $[Cu(hfac)_2L^{n-Pr}]_2$. Procedure B. Yield 76%. Found (%): C, 40.2; H, 3.0; N, 5.3; F, 30.5. $C_{50}H_{48}Cu_2F_{24}N_6O_{12}$. Calculated (%): C, 39.8; H, 3.2; N, 5.6; F, 30.2.

2. Characterization

The microanalyses were performed on a CHNS EA-3000 analyzer (HEKAtech), halogens were determined according to Schöniger's flask combustion technique: chlorine and bromine by mercurimetric titration, fluorine by spectrophotometry of its Ln-alizarin-complex on a Cary-50 (Agilent) at the Multi-access Service Center of Vorozhtsov Novosibirsk Institute of Organic Chemistry of Siberian Branch of Russian Academy of Sciences.

2.1. Powder X-ray diffraction

PXRD data were collected on a PowDix 600 (ADANI) diffractometer equipped with a MYTHEN2 R 1D (Dectris) detector at room temperature using Cu K α radiation at a scanning speed on θ of 0.01°/s. The powders of samples were placed in an aluminum sample holder. The experimental patterns were compared to the simulated ones based on crystal structures obtained by single crystal XRD, which confirmed good phase purity for all of the compounds. The result of phase analysis is entirely consistent with the magnetic measurements and elemental analyses.

Fig. S1. Simulated and experimental PXRD patterns of $[Cu(hfac)_2L^{OEt}]_2$ (*a*) and $[Cu(hfac)_2L^{OMe}]_2$ (*b*).

Fig. S2. Simulated and experimental PXRD patterns of $[Cu(hfac)_2L^{Cl}]_2(a)$, $[Cu(hfac)_2L^{Br}]_2(b)$, $[Cu(hfac)_2L^{n-Pr}]_2(c)$, $[Cu(hfac)_2L^{CF3}]_2(d)$, $[Cu(hfac)_2]_4(L^{CP})_4(e)$, $[Cu(hfac)_2L^{i-Pr}]_4(f)$, $[Cu(hfac)_2]_4(L^{Cy})_2(g)$.

Fig. S3. Simulated and experimental PXRD patterns of $[Cu(hfac)_2L^{Thio}]_2$ (*a*) and $[Cu(hfac)_2L^{Ph}]_2$ (*b*).

2.2. Magnetic measurements

The magnetic susceptibility of the polycrystalline samples was measured with an MPMSXL (Quantum Design) SQUID magnetometer at temperatures of 2–350 K in a magnetic field of 5 kOe. The paramagnetic components of magnetic susceptibility χ were determined with allowance for the diamagnetic contribution evaluated from Pascal's constants. The effective magnetic moment was calculated as $\mu_{eff} = [3k\chi T/(N_A\mu_B^2)]^{1/2} \approx (8\chi T)^{1/2}$, where N_A , μ_B and k – Avogadro's number, Bohr's magneton, and the Boltzmann constant, respectively. Analysis of the experimental data was performed using PHI program [7].

2.3. Single crystal X-ray diffraction

The intensity data for the single crystals of the compounds were collected on a SMART APEX II (Bruker AXS) automated diffractometer with a Helix (Oxford Cryosystems) open flow helium cooler or APEX DUO (Bruker AXS) automated diffractometer with a Cobra (Oxford Cryosystems) open flow nitrogen cooler using the standard procedure (Mo or Cu Kα radiation). The structures were solved by direct methods and refined by the full-matrix least-squares procedure anisotropically for non-hydrogen atoms. The H atoms were calculated geometrically and included in the refinement as riding groups. All calculations were performed using the SHELX programs [8,9]. The crystallographic data and details of experiments are presented in the Supplementary data (Table S1). Complete X-ray diffraction datasets are deposited to the Cambridge Crystallographic Data Center (CCDC Nos are listed in the Table S1).

Table S1. Crysta	data and deta	ails of experime	ents for [Cu(hfac) ₂ L ^R] ₂
------------------	---------------	------------------	---

Formula	[Cu(hfac) ₂ L ^{Cl}] ₂	$[Cu(hfac)_2L^{Br}]_2$	[Cu(hfac) ₂ L ^{OMe}] ₂	[Cu(hfac) ₂ L ^{OEt}] ₂ -I	[Cu(hfac) ₂ L ^{OEt}] ₂ -II
FW	1492.75	1581.66	1483.92	1511.97	1511.97
Т, К	296	296	296	296	296
Space group, Z	<i>P</i> -1, 1	<i>P</i> -1, 1	P2 ₁ /c, 2	P2 ₁ /c, 2	<i>P</i> -1, 1
а,	9.8746(3)	9.9004(6)	14.4037(9)	14.2166(6)	10.6583(3)
b,	11.1848(3)	11.1739(7)	14.0717(9)	18.8967(7)	11.4385(4)
<i>c,</i> Å	15.1435(4)	15.2180(9)	16.2483(10)	11.7669(5)	14.7135(4)
α, °	94.536(2)	94.670(3)	90	90	101.619(1)
<i>в</i> , °	105.712(2)	105.300(3)	115.139(4)	101.305(2)	91.641(1)
γ, °	113.245(1)	113.986(3)	90	90	117.014(1)
<i>V,</i> Å ³	1446.28(7)	1449.2(2)	2981.3(3)	3099.8(2)	1550.43(8)
<i>V/Z,</i> Å ³	1446	1449	1491	1550	1550
D _{calc} , g/cm ³	1.714	1.812	1.653	1.620	1.619
ϑ _{max} , °	28.385	67.821	28.000	22.998	67.766
I _{hkl} total / uniq /	24794 / 7094	20077 / 5161	25745 / 7130	21323 / 4313	23816 / 5559
R _{int}	0.0421	0.0641	0.0349	0.0635	0.0501
I _{hkl} (I>2σ _I) / N	4434 / 461	4462 / 452	4775 / 524	2847 / 506	4705 / 526
Goof	0.932	1.086	0.969	0.940	1.031
R1 / wR2 (I>2σ _i)	0.0408 / 0.0972	0.0793 / 0.1966	0.0390 / 0.0897	0.0376 / 0.0725	0.0522 / 0.1443
R1 / wR2 (all data)	0.0708 / 0.1069	0.0856 / 0.2002	0.0708 / 0.1058	0.0675 / 0.0804	0.0604 / 0.1549
CCDC	2160694	2160688	2322572	2160674	2322569

Formula	[Cu(hfac) ₂ L ^{n-Pr}] ₂	[Cu(hfac) ₂ L ^{<i>i</i>-Pr}] ₄	[Cu(hfac) ₂] ₄ L ^{Cy} ₂	[Cu(hfac) ₂] ₄ L ^{CP} ₄	$[Cu(hfac)_2L^{CF3}]_2$
FW	1508.02	3016.04	2543.46	3120.19	1559.87
Т, К	240	296	296	296	296
Space group, Z	<i>P</i> -1, 1	<i>P</i> -1, 1	<i>P</i> -1, 1	<i>P</i> -1, 1	<i>P</i> -1, 1
а,	10.0433(7)	12.9249(11)	13.560(4)	12.8787(4)	10.1290(6)
b,	11.4576(8)	15.5532(13)	13.632(4)	15.4515(5)	11.3259(7)
<i>c,</i> Å	15.5010(11)	19.6020(17)	15.472(5)	19.9472(7)	15.4203(9)
<i>α</i> , °	70.884(3)	97.260(4)	108.589(6)	69.652(2)	97.324(3)
<i>в</i> , °	83.932(3)	108.948(5)	95.635(6)	71.759(2)	103.008(4)
γ, °	67.474(3)	113.736(4)	108.934(5)	66.608(2)	116.335(3)
<i>V,</i> Å ³	1556.4(2)	3257.8(5)	2498.4(14)	3344.5(2)	1491.5(2)
<i>V/Z,</i> Å ³	1556	1629	2498	3344	1491
D _{calc} , g/cm ³	1.609	1.537	1.690	1.549	1.737
ϑ _{max} , °	67.464	24.998	28.432	22.499	22.499
I _{hkl} total / uniq /	21732 / 5537	47304 / 11466	46134 /12483	37517 / 8743	21817 / 3882
R _{int}	0.0315	0.0351	0.0911	0.0572	0.0627
I _{hkl} (I>2σ _I) / N	5108 / 569	8120 / 973	6150 / 884	5623 / 1055	2711 / 542
Goof	1.023	1.075	0.889	1.009	0.972
R1 / wR2 (I>2σ _i)	0.0379 / 0.1045	0.0520 / 0.1454	0.0398 / 0.0842	0.0431 / 0.0973	0.0409 / 0.0922
R1/wR2 (all I _{hki})	0.0406 / 0.1076	0.0754 / 0.1635	0.0940 / 0.0980	0.0870 / 0.1201	0.0630 / 0.1024
CCDC	2160678	2322575	2160699	2322576	2160697

Table S1. Crystal data and details of experiments for $[Cu(hfac)_2L^R]_2$ (continuation)

Formula			[Cu(hfac) ₂ L ^{Ph}] ₂		
FW			1576.04		
Space group, Z			<i>P</i> -1, 1		
Т, К	293	240	200	150	110
а,	10.1383(4)	10.1211(5)	10.1260(2)	10.1299(3)	10.1333(3)
<i>b</i> ,	11.9217(5)	11.8936(7)	11.9623(4)	11.8398(3)	11.7570(4)
<i>c,</i> Å	15.8104(6)	15.7645(8)	15.7188(4)	15.6339(4)	15.5832(5)
α, °	94.3542(18)	94.128(4)	93.6043(16)	93.9306(13)	94.2706(15)
<i>в</i> , °	108.3180(16)	108.514(4)	108.7135(11)	108.4411(12)	108.2460(15)
γ, °	113.6971(18)	114.163(4)	115.5974(11)	115.3408(12)	115.1866(14)
<i>V</i> , Å ³	1615.55(11)	1596.45(16)	1580.48(7)	1561.48(7)	1548.26(9)
<i>V/Z,</i> Å ³	1615	1596.4	1580.5	1561.5	1548.3
D _{calc} , g/cm ³	1.620	1.639	1.656	1.676	1.690
ϑ _{max} , °	67.932	67.873	67.662	67.543	67.634
I _{hki} total / uniq	24760 / 5766	15237 / 5684	24018 / 5662	24725 / 5572	21639 / 5522
R _{int}	0.0280	0.0486	0.0301	0.0290	0.0297
<i>I_{hkl} (I></i> 2σ _ι) / N	5106 / 559	3660 / 520	5065 / 537	5104 / 510	5032 / 456
Goof	0.972	1.028	1.036	1.062	1.057
R1 / wR2 (I>2σ _ι)	0.0461 / 0.1313	0.0593 / 0.1482	0.0483 / 0.1235	0.0465 / 0.1227	0.0476 / 0.1258
R1/wR2 (all I _{hkl})	0.0512 / 0.1376	0.1008 / 0.1724	0.0536 / 0.1282	0.0498 / 0.1256	0.0512 / 0.1289
CCDC	2322584	2160680	2322567	2322583	2322585

Table S1. Crystal data and details of experiments for [Cu(hfac)₂L^R]₂ (continuation)

Formula	[Cu(hfac) ₂ L ^{Thio}] ₂						
FW	1588.10						
Т, К	296	220	170	120			
Space group, Z		P-:	1, 1				
а,	10.3562(6)	10.3383(9)	10.3236(8)	10.3312(5)			
Ь,	11.3841(7)	11.3546(10)	11.3283(9)	11.2769(6)			
<i>c,</i> Å	15.6769(9)	15.5573(14)	15.4538(12)	15.3209(7)			
α, °	72.469(3)	72.304(5)	72.418(5)	72.939(3)			
<i>в</i> , °	71.725(3)	71.704(5)	71.960(5)	72.059(3)			
γ, °	67.095(3)	66.374(5)	65.621(4)	64.992(3)			
<i>V</i> , Å ³	1582.36(17)	1554.9(3)	1533.2(2)	1511.14(14)			
<i>V/Z,</i> Å ³	1583	1555	15335	15115			
D _{calc} , g/cm ³	1.667	1.696	1.720	1.745			
ϑ _{max} , °	24.999	28.388	28.364	28.309			
I _{hkl} total / uniq / R _{int}	22623 / 5589 / 0.0495	28424 / 7713 / 0.0690	25909 / 7591 / 0.0800	23775 / 73980 / 0.0848			
I _{hki} (I>2σ _i) / N	3964 / 534	4979 / 527	4946 / 484	4777 / 496			
Goof	1.063	1.084	1.065	0.986			
R1 / wR2 (I>2σ _I)	0.0437 / 0.1140	0.0509 / 0.1281	0.0554 / 0.1354	0.0509 / 0.1144			
R1/wR2 (all I _{hki})	0.0645 / 0.1229	0.0853 / 0.1426	0.0924 / 0.1507	0.0901 / 0.1300			
CCDC	2322578	2322574	2322580	2322566			

Table S1. Crystal data and details of experiments for $[Cu(hfac)_2L^R]_2$ (continuation)

3. Selected bond lengths, angles and contacts in dimers

Formula	Т, К	*Cu-O _{NO}	*∠CuON	*(O _{NO} –)Cu–O _{hfac}	*Cu-N	N–O _{Cu} / N–O	$\angle CN_2O_2$ -Py	$O_{NO}O_{NO}$	CuCu
I									
[Cu(hfac) ₂ L ^{OMe}] ₂	296	1.977(2)	124.9(1)	2.008(2)	1.990(1)	1.301(2) / 1.263(2)	57.1	-	5.8108(5)
[Cu(hfac) ₂ L ^{OEt}] ₂ –I	296	1.985(2)	124.0(1)	1.987(2)	2.022(2)	1.300(2) / 1.265(2)	56.1	5.783(3)	5.6724(5)
[Cu(hfac) ₂ L ^{OEt}] ₂ –II	296	1.982(2)	126.5(1)	1.983(2)	2.029(2)	1.297(3) / 1.269(3)	47.7	4.625(8)	5.8497(4)
					II				
$[Cu(hfac)_2L^{CF3}]_2$	296	2.530(2)	154.1(2)	2.225(2)	2.060(2)	1.274(3) / 1.274(3)	80.5	6.276(5)	7.3425(6)
[Cu(hfac) ₂ L ^{n-Pr}] ₂	240	2.454(1)	143.4(1)	2.276(2)	2.015(1)	1.278(2) / 1.274(2)	61.7	4.636(2)	6.9038(6)
[Cu(hfac) ₂ L ^{CI}] ₂	296	2.501(1)	149.2(1)	2.241(2)	2.058(1)	1.280(2) / 1.271(2)	68.0	6.075(3)	7.1619(5)
[Cu(hfac) ₂ L ^{Br}] ₂	296	2.510(4)	150.0(4)	2.238(4)	2.054(4)	1.275(6) / 1.268(6)	70.8	4.625(8)	7.204(1)
$[Cu(hfac)_2]_4(L^{i-Pr})_4$	296	2.507(3)	142.7(2)	2.330(3)	2.002(2)	1.279(3) / 1.279(3)	60.1	3.622(4)	6.3206(8)
$[Cu(hfac)_2]_4(L^{Cy})_2$	296	2.555(2)	138.5(1)	2.256(2)	2.014(2)	1.278(2) / 1.273(3)	52.3	-	6.722(2)
$[Cu(hfac)_2]_4(L^{CP})_4$	296	2.492(2)	140.3(2)	2.322(2)	1.991(3)	1.283(3) / 1.285(3)	58.5	3.467(5)	6.0336(7)
	296	2.249(2)	133.1(1)	2.263(3)	1.996(2)	1.285(3) / 1.267(3)	58.8	5.513(3)	6.3393(5)
	220	2.160(2)	131.0(1)	2.186(3)	1.995(2)	1.292(3) / 1.264(3)	57.7	5.509(4)	6.2536(7)
	170	2.058(2)	128.6(2)	2.060(3)	1.999(2)	1.302(3) / 1.273(3)	56.9	5.497(4)	6.1720(6)
	120	1.990(2)	126.3(2)	2.014(2)	1.999(2)	1.300(3) / 1.268(3)	56.9	5.490(5)	6.1357(6)
	296	2.189(1)	131.5(1)	2.227(3)	2.008(2)	1.294(3) / 1.269(3)	54.7	5.432(4)	6.2011(5)
	240	2.135(3)	130.6(3)	2.149(6)	2.003(4)	1.324(5) / 1.270(5)	54.3	5.396(6)	6.159(1)
[Cu(hfac) ₂ L ^{Ph}] ₂	200	2.080(2)	128.8(1)	2.076(2)	2.005(2)	1.294(3) / 1.273(3)	53.4	5.389(4)	6.1073(6)
	150	2.018(2)	127.1(1)	2.015(2)	2.005(2)	1.296(3) / 1.268(3)	52.9	5.356(4)	6.0637(4)
	110	1.991(2)	126.0(1)	2.006(2)	2.004(2)	1.301(3) / 1.270(3)	52.6	5.340(3)	6.0419(4)

Table S2. Selected bond lengths, contacts and angles (Å, deg) (data are given for binuclear fragment only*)

4. References

- J.A. Bertrand, R.I. Kaplan, A Study of Bis(hexafluoroacetylacetonato)copper(II), Inorg. Chem. 5 (1966) 489–491. https://doi.org/10.1021/ic50037a039.
- [2] V.I. Ovcharenko, S. V. Fokin, G. V. Romanenko, I. V. Korobkov, P. Rey, Synthesis of vicinal bishydroxylamine, Russ. Chem. Bull. 48 (1999) 1519–1525. https://doi.org/10.1007/BF02496404.
- [3] P.A. Chernavin, G.A. Letyagin, S.E. Tolstikov, A.E. Kolesnikov, G. V. Romanenko, K.A. Smirnova, A. V. Borodulina, V.I. Ovcharenko, A.S. Bogomyakov, Pyridyl-Substituted Nitronyl Nitroxides: Comprehensive Magnetochemical and Quantum Chemical Study, Chem. – A Eur. J. (2024). https://doi.org/10.1002/chem.202400873.
- [4] A.E. Kolesnikov, A.O. Bryzgalov, S.E. Tolstikov, V. V. Yanshole, G. V. Romanenko, G.A. Letyagin, K.A. Smirnova, T.G. Tolstikova, A.S. Bogomyakov, V.I. Ovcharenko, Novel pyridyl-substituted nitronyl nitroxides as potential antiarrhythmic and hypotensive agents with low toxicity and enhanced stability in aqueous solutions, Nitric Oxide. 143 (2024) 9–15. https://doi.org/10.1016/j.niox.2023.12.001.
- [5] S. Tolstikov, K. Smirnova, A. Kolesnikov, G. Letyagin, A. Bogomyakov, G. Romanenko, V. Ovcharenko, Relationship between phase transition temperature and accessible volume for substituent in Cu(hfac)2 chain-polymer complexes with pyridine-based nitroxides, Polyhedron. 230 (2023) 116212. https://doi.org/10.1016/j.poly.2022.116212.
- [6] Armarego, W. L. F. Chapter 3 Purification of Organic Chemicals. In *Purification of Laboratory Chemicals (Eighth Edition)*; Armarego, W. L. F., Ed.; Butterworth-Heinemann, 2017; pp 95–634. <u>https://doi.org/10.1016/B978-0-12-805457-4.50003-3</u>.
- [7] N.F. Chilton, R.P. Anderson, L.D. Turner, A. Soncini, K.S. Murray, PHI: A powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear dand f-block complexes, J. Comput. Chem. 34 (2013) 1164–1175. https://doi.org/10.1002/jcc.23234.
- [8] G.M. Sheldrick, SHELXT Integrated space-group and crystal-structure determination, Acta Crystallogr. Sect. A Found. Adv. 71 (2015) 3–8. https://doi.org/10.1107/S2053273314026370.
- [9] G.M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. Sect. C Struct. Chem. 71 (2015) 3–8. https://doi.org/10.1107/S2053229614024218.