Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting Information

MoS₂/Ni_xS_y/NF Heterojunction Catalyst for Efficient Oxygen Evolution Reaction

Ting Xie^a, Jicheng Wu^a, Zhanpeng Han^a, Dandan Wu^a, Guojian Jiang^{b,c,d*}

a: School of Materials Science and Engineering, Shanghai Institute of Technology,

100 Haiquan Road, Shanghai 201418, P R China

b:State Key Laboratory of Urban Water Resources & Environment, Harbin Institute

of Technology, Harbin 150090, P R China

c: State Key Laboratory of Mineral Processing, Beijing 102628, P R China

d: Anhui Province Key Laboratory of Critical Friction Pair for Advanced Equipment,

Hefei 230000, P R China

*: Authors to whom any correspondence should be addressed.

E-mail: guojianjiang@sit.edu.cn

1. Experimental Section

1.1 Materials and chemicals

Na₂MoO₄ (A.R., 99.0%) and CH₃CSNH₂ (A.R., 99.0%) were purchased from Titan. Nickel Foam (NF) purchased from Suzhou Kesheng and Metal Materials All reagents can be used without further purification.

1.2 Synthesis of MoS₂/Ni_xS_y/NF

Nickel foam of 2×4 cm² size was sonicated in a 3M HCl solution for 15 min, and then the treated nickel foam was washed several times with deionized water and ethanol and dried. Dissolve 2.4 mmol of Na₂MoO₄ and different amounts (3.2–8 mmol) of CH₃CSNH₂in 35 mL of deionized water with continuous magnetic stirring for 15 min, and after obtaining a clear and transparent solution, transfer the solution to a 50 ml PTFE reactor and put the treated nickel foam into it at an angle. After sealing the reaction system, the reactor was put into an electrically heated, constant-temperature blast drying oven and reacted at 200 °C for 12 h.After the reaction is complete, the product is washed multiple times with deionized water and ethanol, and dried in a vacuum drying oven at 60 °C to obtain MoS₂/Ni_xS_v/NF.

1.3 Synthesis of MoS₂/NF

Dissolve 2.4 mmol of Na₂MoO₄ and 6.4 mmol of CH₃CSNH₂in 35 mL of deionized water and stir continuously for 15 minutes to obtain a clear and transparent solution. Transfer the solution to a 50 ml polytetrafluoroethylene reaction vessel and seal the reaction system. Place the reaction vessel in an electric constant temperature blast drying oven at 200 °C for 12 hours. After the reaction is complete, the product is washed multiple times with deionized water and ethanol, and dried in a 60 °C vacuum drying oven to obtain MoS₂ powder. 5 mg MoS₂ powder was dispersed in a mixture of 485 ul ethanol, 485 ul deionized water and 30 ul Nafion solution for ultrasonic 30 min, then 480 ul solution was smeared on 1×1.2 cm² foam nickel and dried to obtain MoS₂/NF.

1.4 Synthesis of Ni₃S₂/NF

Nickel foam of 2×4 cm² size was sonicated in a 3M HCl solution for 15 min, and then the treated nickel foam was washed several times with deionized water and ethanol and dried. Dissolve 6.4 mmol of CH₃CSNH₂ in 35 mL of deionized water and continue magnetic stirring for 15 min to obtain a clear and transparent solution, then transfer the solution to a 50 ml polytetrafluoroethylene reactor, and tilt the treated foam nickel into it. After sealing the reaction system, place the reaction kettle in an electric constant temperature blast drying oven at 200 °C for 12 hours of reaction. After the reaction is complete, the product is washed multiple times with deionized water and ethanol, and dried in a vacuum drying oven at 60 °C to obtain Ni₃S₂/NF.

2. Figures

Fig.S1. SEM images of (a) Ni_3S_2/NF and (b-c) MoS_2

Fig.S2. EDS image of $MoS_2/Ni_xS_y/NF$

Fig.S3. XRD patterns of (a) catalysts with different sulfur source ratios and (b) the reference catalyst.

Fig.S4. XPS survey spectrum of $MoS_2/Ni_xS_y/NF$, MoS_2 and Ni_3S_2/NF .

Fig.S5. LSV of catalysts with different sulfur source ratio.

Fig.S6. Cyclic voltammograms (CV) for (a) Ni_3S_2/NF , (b) MoS_2/NF and (c) $MoS_2/Ni_xS_y/NF$ at different scan rate with 20, 40, 60, 80 ,100 and 120 mV·s⁻¹.

Fig.S7. (a) XRD patterns and (b) SEM images of MoS₂/Ni_xSy/NF after stability testing.

Sample	OER potential	Ref.
	(mV)	
This work	150	This work
NiSe ₂ @MoS ₂	267	[1]
$CMoS_2/NiS_2$	278	[2]
MoS ₂ /NiFeS ₂	192	[3]
NiMoS/N	260	[4]
CoxPQDs-MoS ₂ @Ni ₃ S ₂ /NF	332	[5]
Co-MoS2/Ni ₃ S ₂ -GO/NF	161	[6]
VS-Ni ₃ S ₂ /MoS ₂	180	[7]
Fe-MoS ₂ /Ni ₃ S ₂ /NF	320	[8]
Ni ₃ S ₂ PN/NF	210	[9]
ZrMo-NiS/NF	257	[10]
g-CN/NiS	194	[11]

Table.S1. Comparison of the OER performance between the

 $MoS_2/Ni_xS_y/NF$ catalyst and other electrocatalysts at 10 mA·cm⁻².

References

[1] Y. Huang, J. Huang, K. Xu, R. Geng, RSC advances, 11 (2021) 26928-26936.

[2] J. Lin, P. Wang, H. Wang, C. Li, X. Si, J. Qi, J. Cao, Z. Zhong, W. Fei, J. Feng, Advanced Science, 6 (2019) 1900246.

[3] Y.-Y. Feng, G. Deng, X.-Y. Wang, M. Zhu, Q.-N. Bian, B.-S. Guo, International Journal of Hydrogen Energy, 48 (2023) 12354-12363.

[4] C. Wang, X. Shao, J. Pan, J. Hu, X. Xu, Applied Catalysis B: Environmental, 268 (2020) 118435.

[5] Y. Fu, J. Pan, G. Xiao, J. Niu, W. Fu, J. Wang, Y. Zheng, C. Li, Journal of

Materials Science: Materials in Electronics, 32 (2021) 16126-16138.

[6] Y. Yao, J. He, X. Zhu, L. Mu, J. Li, K. Li, M. Qu, International Journal of Hydrogen Energy, 51 (2024) 207-221.

[7] Z. An, H. Xue, J. Sun, N. Guo, T. Song, J. Sun, Y.-R. Hao, Q. Wang, Chinese Journal of Structural Chemistry, 41 (2022) 2208037-2208043.

[8] M. Dou, M. Yao, K. Ding, Y. Cheng, H. Shao, S. Li, Y. Chen, Dalton Transactions, 52 (2023) 18342-18353.

[9 P. Zhu, L. Ye, X. Li, T. Wang, Y. Zhong, L. Zhuang, APL Materials, 12 (2024).

[10] X. Duan, J. Cen, Y. Wei, X. Qiu, X. Liu, Journal of Physics and Chemistry of Solids, 196 (2025) 112268.

[11] M. Nisa, K.M. Younes, B. Huwaimel, W.M. Khojali, W.F. Soliman, M.

Abdullah, A. Henaish, Fuel, 368 (2024) 131627.